@@ -246,7 +246,7 @@ def get_tau_sigma(
246246
247247class Uniform (BoundedContinuous ):
248248 r"""
249- Continuous uniform log-likelihood .
249+ Continuous uniform distribution .
250250
251251 The pdf of this distribution is
252252
@@ -360,7 +360,7 @@ def rng_fn(cls, rng, size):
360360
361361
362362class Flat (Continuous ):
363- """Uninformative log-likelihood that returns 0 regardless of the passed value."""
363+ """Uninformative distribution that returns 0 regardless of the passed value."""
364364
365365 rv_op = flat
366366
@@ -417,7 +417,7 @@ def logcdf(value):
417417
418418class Normal (Continuous ):
419419 r"""
420- Univariate normal log-likelihood .
420+ Univariate normal distribution .
421421
422422 The pdf of this distribution is
423423
@@ -558,7 +558,7 @@ def rng_fn(
558558
559559class TruncatedNormal (BoundedContinuous ):
560560 r"""
561- Univariate truncated normal log-likelihood .
561+ Univariate truncated normal distribution .
562562
563563 The pdf of this distribution is
564564
@@ -745,7 +745,7 @@ def truncated_normal_default_transform(op, rv):
745745
746746class HalfNormal (PositiveContinuous ):
747747 r"""
748- Half-normal log-likelihood .
748+ Half-normal distribution .
749749
750750 The pdf of this distribution is
751751
@@ -875,7 +875,7 @@ def rng_fn(cls, rng, mu, lam, alpha, size) -> np.ndarray:
875875
876876class Wald (PositiveContinuous ):
877877 r"""
878- Wald log-likelihood .
878+ Wald distribution .
879879
880880 The pdf of this distribution is
881881
@@ -1054,7 +1054,7 @@ def rng_fn(cls, rng, alpha, beta, size) -> np.ndarray:
10541054
10551055class Beta (UnitContinuous ):
10561056 r"""
1057- Beta log-likelihood .
1057+ Beta distribution .
10581058
10591059 The pdf of this distribution is
10601060
@@ -1240,7 +1240,7 @@ def rv_op(cls, a, b, *, size=None, rng=None):
12401240
12411241class Kumaraswamy (UnitContinuous ):
12421242 r"""
1243- Kumaraswamy log-likelihood .
1243+ Kumaraswamy distribution .
12441244
12451245 The pdf of this distribution is
12461246
@@ -1330,7 +1330,7 @@ def logcdf(value, a, b):
13301330
13311331class Exponential (PositiveContinuous ):
13321332 r"""
1333- Exponential log-likelihood .
1333+ Exponential distribution .
13341334
13351335 The pdf of this distribution is
13361336
@@ -1424,7 +1424,7 @@ def icdf(value, mu):
14241424
14251425class Laplace (Continuous ):
14261426 r"""
1427- Laplace log-likelihood .
1427+ Laplace distribution .
14281428
14291429 The pdf of this distribution is
14301430
@@ -1546,7 +1546,7 @@ def rv_op(cls, b, kappa, mu, *, size=None, rng=None):
15461546
15471547class AsymmetricLaplace (Continuous ):
15481548 r"""
1549- Asymmetric-Laplace log-likelihood .
1549+ Asymmetric-Laplace distribution .
15501550
15511551 The pdf of this distribution is
15521552
@@ -1636,7 +1636,7 @@ def logp(value, b, kappa, mu):
16361636
16371637class LogNormal (PositiveContinuous ):
16381638 r"""
1639- Log-normal log-likelihood .
1639+ Log-normal distribution .
16401640
16411641 Distribution of any random variable whose logarithm is normally
16421642 distributed. A variable might be modeled as log-normal if it can
@@ -1755,7 +1755,7 @@ def icdf(value, mu, sigma):
17551755
17561756class StudentT (Continuous ):
17571757 r"""
1758- Student's T log-likelihood .
1758+ Student's T distribution .
17591759
17601760 Describes a normal variable whose precision is gamma distributed.
17611761 If only nu parameter is passed, this specifies a standard (central)
@@ -1901,7 +1901,7 @@ def rng_fn(cls, rng, a, b, mu, sigma, size=None) -> np.ndarray:
19011901
19021902class SkewStudentT (Continuous ):
19031903 r"""
1904- Skewed Student's T distribution log-likelihood .
1904+ Skewed Student's T distribution distribution .
19051905
19061906 This follows Jones and Faddy (2003)
19071907
@@ -2016,7 +2016,7 @@ def icdf(value, a, b, mu, sigma):
20162016
20172017class Pareto (BoundedContinuous ):
20182018 r"""
2019- Pareto log-likelihood .
2019+ Pareto distribution .
20202020
20212021 Often used to characterize wealth distribution, or other examples of the
20222022 80/20 rule.
@@ -2125,7 +2125,7 @@ def pareto_default_transform(op, rv):
21252125
21262126class Cauchy (Continuous ):
21272127 r"""
2128- Cauchy log-likelihood .
2128+ Cauchy distribution .
21292129
21302130 Also known as the Lorentz or the Breit-Wigner distribution.
21312131
@@ -2213,7 +2213,7 @@ def icdf(value, alpha, beta):
22132213
22142214class HalfCauchy (PositiveContinuous ):
22152215 r"""
2216- Half-Cauchy log-likelihood .
2216+ Half-Cauchy distribution .
22172217
22182218 The pdf of this distribution is
22192219
@@ -2297,7 +2297,7 @@ def icdf(value, loc, beta):
22972297
22982298class Gamma (PositiveContinuous ):
22992299 r"""
2300- Gamma log-likelihood .
2300+ Gamma distribution .
23012301
23022302 Represents the sum of alpha exponentially distributed random variables,
23032303 each of which has rate beta.
@@ -2428,7 +2428,7 @@ def icdf(value, alpha, scale):
24282428
24292429class InverseGamma (PositiveContinuous ):
24302430 r"""
2431- Inverse gamma log-likelihood , the reciprocal of the gamma distribution.
2431+ Inverse gamma distribution , the reciprocal of the gamma distribution.
24322432
24332433 The pdf of this distribution is
24342434
@@ -2544,7 +2544,7 @@ def logcdf(value, alpha, beta):
25442544
25452545class ChiSquared :
25462546 r"""
2547- :math:`\chi^2` log-likelihood .
2547+ :math:`\chi^2` distribution .
25482548
25492549 This is the distribution from the sum of the squares of :math:`\nu` independent standard normal random variables or a special
25502550 case of the gamma distribution with :math:`\alpha = \nu/2` and :math:`\beta = 1/2`.
@@ -2620,7 +2620,7 @@ def rv_op(cls, alpha, beta, *, rng=None, size=None) -> np.ndarray:
26202620
26212621class Weibull (PositiveContinuous ):
26222622 r"""
2623- Weibull log-likelihood .
2623+ Weibull distribution .
26242624
26252625 The pdf of this distribution is
26262626
@@ -2742,7 +2742,7 @@ def rv_op(cls, nu, sigma, *, size=None, rng=None) -> np.ndarray:
27422742
27432743class HalfStudentT (PositiveContinuous ):
27442744 r"""
2745- Half Student's T log-likelihood .
2745+ Half Student's T distribution .
27462746
27472747 The pdf of this distribution is
27482748
@@ -2863,7 +2863,7 @@ def rv_op(cls, mu, sigma, nu, *, size=None, rng=None):
28632863
28642864class ExGaussian (Continuous ):
28652865 r"""
2866- Exponentially modified Gaussian log-likelihood .
2866+ Exponentially modified Gaussian distribution .
28672867
28682868 Results from the convolution of a normal distribution with an exponential
28692869 distribution.
@@ -2986,7 +2986,7 @@ def logcdf(value, mu, sigma, nu):
29862986
29872987class VonMises (CircularContinuous ):
29882988 r"""
2989- Univariate VonMises log-likelihood .
2989+ Univariate VonMises distribution .
29902990
29912991 The pdf of this distribution is
29922992
@@ -3072,7 +3072,7 @@ def rng_fn(cls, rng, mu, sigma, alpha, size=None) -> np.ndarray:
30723072
30733073class SkewNormal (Continuous ):
30743074 r"""
3075- Univariate skew-normal log-likelihood .
3075+ Univariate skew-normal distribution .
30763076
30773077 The pdf of this distribution is
30783078
@@ -3167,7 +3167,7 @@ def logp(value, mu, sigma, alpha):
31673167
31683168class Triangular (BoundedContinuous ):
31693169 r"""
3170- Continuous Triangular log-likelihood .
3170+ Continuous Triangular distribution .
31713171
31723172 The pdf of this distribution is
31733173
@@ -3296,7 +3296,7 @@ def triangular_default_transform(op, rv):
32963296
32973297class Gumbel (Continuous ):
32983298 r"""
3299- Univariate right-skewed Gumbel log-likelihood .
3299+ Univariate right-skewed Gumbel distribution .
33003300
33013301 This distribution is typically used for modeling maximum (or extreme) values.
33023302 Those looking to find the extreme minimum provided by the left-skewed Gumbel should
@@ -3523,7 +3523,7 @@ def logp(value, b, sigma):
35233523
35243524class Logistic (Continuous ):
35253525 r"""
3526- Logistic log-likelihood .
3526+ Logistic distribution .
35273527
35283528 The pdf of this distribution is
35293529
@@ -3631,7 +3631,7 @@ def rv_op(cls, mu, sigma, *, size=None, rng=None):
36313631
36323632class LogitNormal (UnitContinuous ):
36333633 r"""
3634- Logit-Normal log-likelihood .
3634+ Logit-Normal distribution .
36353635
36363636 The pdf of this distribution is
36373637
@@ -3876,7 +3876,7 @@ def rng_fn(cls, rng, mu, sigma, size=None) -> np.ndarray:
38763876
38773877class Moyal (Continuous ):
38783878 r"""
3879- Moyal log-likelihood .
3879+ Moyal distribution .
38803880
38813881 The pdf of this distribution is
38823882
0 commit comments