File tree Expand file tree Collapse file tree 2 files changed +60
-0
lines changed Expand file tree Collapse file tree 2 files changed +60
-0
lines changed Original file line number Diff line number Diff line change 1+ package :
2+ name : fastcan
3+ version : 0.4.1
4+ top-level :
5+ - fastcan
6+ source :
7+ url : https://files.pythonhosted.org/packages/source/f/fastcan/fastcan-0.4.1.tar.gz
8+ sha256 : a4d3b285671920ed413462a4a3536794f494cd4373501a68f6820e1ecb151fbe
9+ requirements :
10+ run :
11+ - scikit-learn
12+ test :
13+ imports :
14+ - fastcan
15+ about :
16+ home : https://github.com/scikit-learn-contrib/fastcan
17+ PyPI : https://pypi.org/project/fastcan
18+ summary : A fast canonical-correlation-based greedy search algorithm
19+ license : MIT
20+ extra :
21+ recipe-maintainers :
22+ - MatthewSZhang
Original file line number Diff line number Diff line change 1+ import pytest
2+ from pytest_pyodide import run_in_pyodide
3+
4+
5+ @pytest .mark .driver_timeout (60 )
6+ @run_in_pyodide (packages = ["fastcan" ])
7+ def test_fastcan (selenium ):
8+ from fastcan import FastCan
9+ from sklearn .datasets import make_classification
10+ from sklearn .linear_model import LinearRegression
11+ n_samples = 200
12+ n_features = 20
13+ n_classes = 8
14+ n_informative = 5
15+
16+ X , y = make_classification (
17+ n_samples = n_samples ,
18+ n_features = n_features ,
19+ n_informative = n_informative ,
20+ n_redundant = 0 ,
21+ n_repeated = 0 ,
22+ n_classes = n_classes ,
23+ n_clusters_per_class = 1 ,
24+ flip_y = 0.0 ,
25+ class_sep = 10 ,
26+ shuffle = False ,
27+ random_state = 0 ,
28+ )
29+
30+ reg = LinearRegression ().fit (X [:, :n_informative ], y )
31+ gtruth_ssc = reg .score (X [:, :n_informative ], y )
32+
33+ correlation_filter = FastCan (
34+ n_features_to_select = n_informative ,
35+ )
36+ correlation_filter .fit (X , y )
37+ ssc = correlation_filter .scores_ .sum ()
38+ assert abs (ssc - gtruth_ssc ) < 1e-5
You can’t perform that action at this time.
0 commit comments