@@ -144,8 +144,8 @@ using the following components:
144
144
:template: rl_template.rst
145
145
146
146
147
- CompressedStorage
148
- CompressedStorageCheckpointer
147
+ CompressedListStorage
148
+ CompressedListStorageCheckpointer
149
149
FlatStorageCheckpointer
150
150
H5StorageCheckpointer
151
151
ImmutableDatasetWriter
@@ -197,10 +197,10 @@ Compressed Storage for Memory Efficiency
197
197
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
198
198
199
199
For applications where memory usage or memory bandwidth is a primary concern, especially when storing or transferring
200
- large sensory observations like images or audio, the :class: `~torchrl.data.replay_buffers.storages.CompressedStorage `
200
+ large sensory observations like images, audio, or text. The :class: `~torchrl.data.replay_buffers.storages.CompressedListStorage `
201
201
provides significant memory savings through compression.
202
202
203
- The `CompressedStorage `` compresses data when storing and decompresses when retrieving,
203
+ The `CompressedListStorage `` compresses data when storing and decompresses when retrieving,
204
204
achieving compression ratios of 2-10x for image data while maintaining full data fidelity.
205
205
It uses zstd compression by default but supports custom compression algorithms.
206
206
@@ -214,11 +214,11 @@ Key features:
214
214
Example usage:
215
215
216
216
>>> import torch
217
- >>> from torchrl.data import ReplayBuffer, CompressedStorage
217
+ >>> from torchrl.data import ReplayBuffer, CompressedListStorage
218
218
>>> from tensordict import TensorDict
219
219
>>>
220
220
>>> # Create a compressed storage for image data
221
- >>> storage = CompressedStorage (max_size = 1000 , compression_level = 3 )
221
+ >>> storage = CompressedListStorage (max_size = 1000 , compression_level = 3 )
222
222
>>> rb = ReplayBuffer(storage = storage, batch_size = 32 )
223
223
>>>
224
224
>>> # Add image data
@@ -241,16 +241,16 @@ For custom compression algorithms:
241
241
>>> def my_decompress (compressed_tensor , metadata ):
242
242
... return compressed_tensor.to(metadata[" dtype" ])
243
243
>>>
244
- >>> storage = CompressedStorage (
244
+ >>> storage = CompressedListStorage (
245
245
... max_size= 1000 ,
246
246
... compression_fn= my_compress,
247
247
... decompression_fn= my_decompress
248
248
... )
249
249
250
- .. note :: The CompressedStorage requires the `zstandard` library for default compression.
250
+ .. note :: The CompressedListStorage requires the `zstandard` library for default compression.
251
251
Install with: ``pip install zstandard ``
252
252
253
- .. note :: An example of how to use the CompressedStorage is available in the
253
+ .. note :: An example of how to use the CompressedListStorage is available in the
254
254
`examples/replay-buffers/compressed_replay_buffer_example.py <https://github.com/pytorch/rl/blob/main/examples/replay-buffers/compressed_replay_buffer_example.py >`_ file.
255
255
256
256
Sharing replay buffers across processes
0 commit comments