|
| 1 | +#!/usr/bin/env python3 |
| 2 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 3 | +# All rights reserved. |
| 4 | +# |
| 5 | +# This source code is licensed under the BSD-style license found in the |
| 6 | +# LICENSE file in the root directory of this source tree. |
| 7 | + |
| 8 | + |
| 9 | +# pyre-strict |
| 10 | + |
| 11 | +#!/usr/bin/env python3 |
| 12 | + |
| 13 | +import logging |
| 14 | +import time |
| 15 | +from dataclasses import dataclass |
| 16 | +from enum import Enum, unique |
| 17 | +from typing import List, Optional, Tuple |
| 18 | + |
| 19 | +import torch |
| 20 | +from pyre_extensions import none_throws |
| 21 | + |
| 22 | +from torchrec.sparse.jagged_tensor import JaggedTensor |
| 23 | + |
| 24 | +logger: logging.Logger = logging.getLogger(__name__) |
| 25 | + |
| 26 | + |
| 27 | +@unique |
| 28 | +class HashZchEvictionPolicyName(Enum): |
| 29 | + # eviction based on the time the ID is last seen during training, |
| 30 | + # and a single TTL |
| 31 | + SINGLE_TTL_EVICTION = "SINGLE_TTL_EVICTION" |
| 32 | + # eviction based on the time the ID is last seen during training, |
| 33 | + # and per-feature TTLs |
| 34 | + PER_FEATURE_TTL_EVICTION = "PER_FEATURE_TTL_EVICTION" |
| 35 | + # eviction based on least recently seen ID within the probe range |
| 36 | + LRU_EVICTION = "LRU_EVICTION" |
| 37 | + |
| 38 | + |
| 39 | +@torch.jit.script |
| 40 | +@dataclass |
| 41 | +class HashZchEvictionConfig: |
| 42 | + features: List[str] |
| 43 | + single_ttl: Optional[int] = None |
| 44 | + per_feature_ttl: Optional[List[int]] = None |
| 45 | + |
| 46 | + |
| 47 | +@torch.fx.wrap |
| 48 | +def get_kernel_from_policy( |
| 49 | + policy_name: Optional[HashZchEvictionPolicyName], |
| 50 | +) -> int: |
| 51 | + return ( |
| 52 | + 1 |
| 53 | + if policy_name is not None |
| 54 | + and policy_name == HashZchEvictionPolicyName.LRU_EVICTION |
| 55 | + else 0 |
| 56 | + ) |
| 57 | + |
| 58 | + |
| 59 | +class HashZchEvictionScorer: |
| 60 | + def __init__(self, config: HashZchEvictionConfig) -> None: |
| 61 | + self._config: HashZchEvictionConfig = config |
| 62 | + |
| 63 | + def gen_score(self, feature: JaggedTensor, device: torch.device) -> torch.Tensor: |
| 64 | + return torch.empty(0, device=device) |
| 65 | + |
| 66 | + def gen_threshold(self) -> int: |
| 67 | + return -1 |
| 68 | + |
| 69 | + |
| 70 | +class HashZchSingleTtlScorer(HashZchEvictionScorer): |
| 71 | + def gen_score(self, feature: JaggedTensor, device: torch.device) -> torch.Tensor: |
| 72 | + assert ( |
| 73 | + self._config.single_ttl is not None and self._config.single_ttl > 0 |
| 74 | + ), "To use scorer HashZchSingleTtlScorer, a positive single_ttl is required." |
| 75 | + |
| 76 | + return torch.full_like( |
| 77 | + feature.values(), |
| 78 | + # pyre-ignore [58] |
| 79 | + self._config.single_ttl + int(time.time() / 3600), |
| 80 | + dtype=torch.int32, |
| 81 | + device=device, |
| 82 | + ) |
| 83 | + |
| 84 | + def gen_threshold(self) -> int: |
| 85 | + return int(time.time() / 3600) |
| 86 | + |
| 87 | + |
| 88 | +class HashZchPerFeatureTtlScorer(HashZchEvictionScorer): |
| 89 | + def __init__(self, config: HashZchEvictionConfig) -> None: |
| 90 | + super().__init__(config) |
| 91 | + |
| 92 | + assert self._config.per_feature_ttl is not None and len( |
| 93 | + self._config.features |
| 94 | + ) == len( |
| 95 | + # pyre-ignore [6] |
| 96 | + self._config.per_feature_ttl |
| 97 | + ), "To use scorer HashZchPerFeatureTtlScorer, a 1:1 mapping between features and per_feature_ttl is required." |
| 98 | + |
| 99 | + self._per_feature_ttl = torch.IntTensor(self._config.per_feature_ttl) |
| 100 | + |
| 101 | + def gen_score(self, feature: JaggedTensor, device: torch.device) -> torch.Tensor: |
| 102 | + feature_split = feature.weights() |
| 103 | + assert feature_split.size(0) == self._per_feature_ttl.size(0) |
| 104 | + |
| 105 | + scores = self._per_feature_ttl.repeat_interleave(feature_split) + int( |
| 106 | + time.time() / 3600 |
| 107 | + ) |
| 108 | + |
| 109 | + return scores.to(device=device) |
| 110 | + |
| 111 | + def gen_threshold(self) -> int: |
| 112 | + return int(time.time() / 3600) |
| 113 | + |
| 114 | + |
| 115 | +@torch.fx.wrap |
| 116 | +def get_eviction_scorer( |
| 117 | + policy_name: str, config: HashZchEvictionConfig |
| 118 | +) -> HashZchEvictionScorer: |
| 119 | + if policy_name == HashZchEvictionPolicyName.SINGLE_TTL_EVICTION: |
| 120 | + return HashZchSingleTtlScorer(config) |
| 121 | + elif policy_name == HashZchEvictionPolicyName.PER_FEATURE_TTL_EVICTION: |
| 122 | + return HashZchPerFeatureTtlScorer(config) |
| 123 | + elif policy_name == HashZchEvictionPolicyName.LRU_EVICTION: |
| 124 | + return HashZchSingleTtlScorer(config) |
| 125 | + else: |
| 126 | + return HashZchEvictionScorer(config) |
| 127 | + |
| 128 | + |
| 129 | +class HashZchThresholdEvictionModule(torch.nn.Module): |
| 130 | + """ |
| 131 | + This module manages the computation of eviction score for input IDs. Based on the selected |
| 132 | + eviction policy, a scorer is initiated to generate a score for each ID. The kernel |
| 133 | + will use this score to make eviction decisions. |
| 134 | +
|
| 135 | + Args: |
| 136 | + policy_name: an enum value that indicates the eviction policy to use. |
| 137 | + config: a config that contains information needed to run the eviction policy. |
| 138 | +
|
| 139 | + Example:: |
| 140 | + module = HashZchThresholdEvictionModule(...) |
| 141 | + score = module(feature) |
| 142 | + """ |
| 143 | + |
| 144 | + _eviction_scorer: HashZchEvictionScorer |
| 145 | + |
| 146 | + def __init__( |
| 147 | + self, |
| 148 | + policy_name: HashZchEvictionPolicyName, |
| 149 | + config: HashZchEvictionConfig, |
| 150 | + ) -> None: |
| 151 | + super().__init__() |
| 152 | + |
| 153 | + self._policy_name: HashZchEvictionPolicyName = policy_name |
| 154 | + self._config: HashZchEvictionConfig = config |
| 155 | + self._eviction_scorer = get_eviction_scorer( |
| 156 | + policy_name=self._policy_name, |
| 157 | + config=self._config, |
| 158 | + ) |
| 159 | + |
| 160 | + logger.info( |
| 161 | + f"HashZchThresholdEvictionModule: {self._policy_name=}, {self._config=}" |
| 162 | + ) |
| 163 | + |
| 164 | + def forward( |
| 165 | + self, feature: JaggedTensor, device: torch.device |
| 166 | + ) -> Tuple[torch.Tensor, int]: |
| 167 | + """ |
| 168 | + Args: |
| 169 | + feature: a jagged tensor that contains the input IDs, and their lengths and |
| 170 | + weights (feature split). |
| 171 | + device: device of the tensor. |
| 172 | +
|
| 173 | + Returns: |
| 174 | + a tensor that contains the eviction score for each ID, plus an eviction threshold. |
| 175 | + """ |
| 176 | + return ( |
| 177 | + self._eviction_scorer.gen_score(feature, device), |
| 178 | + self._eviction_scorer.gen_threshold(), |
| 179 | + ) |
| 180 | + |
| 181 | + |
| 182 | +class HashZchOptEvictionModule(torch.nn.Module): |
| 183 | + """ |
| 184 | + This module manages the eviction of IDs from the ZCH table based on the selected eviction policy. |
| 185 | + Args: |
| 186 | + policy_name: an enum value that indicates the eviction policy to use. |
| 187 | + Example: |
| 188 | + module = HashZchOptEvictionModule(policy_name=HashZchEvictionPolicyName.LRU_EVICTION) |
| 189 | + """ |
| 190 | + |
| 191 | + def __init__( |
| 192 | + self, |
| 193 | + policy_name: HashZchEvictionPolicyName, |
| 194 | + ) -> None: |
| 195 | + super().__init__() |
| 196 | + |
| 197 | + self._policy_name: HashZchEvictionPolicyName = policy_name |
| 198 | + |
| 199 | + def forward(self, feature: JaggedTensor, device: torch.device) -> Tuple[None, int]: |
| 200 | + """ |
| 201 | + Does not apply to this Eviction Policy. Returns None and -1. |
| 202 | + Args: |
| 203 | + feature: No op |
| 204 | + device: No op |
| 205 | + Returns: |
| 206 | + None, -1 |
| 207 | + """ |
| 208 | + return None, -1 |
| 209 | + |
| 210 | + |
| 211 | +@torch.fx.wrap |
| 212 | +def get_eviction_module( |
| 213 | + policy_name: HashZchEvictionPolicyName, config: Optional[HashZchEvictionConfig] |
| 214 | +) -> torch.nn.Module: |
| 215 | + if policy_name in ( |
| 216 | + HashZchEvictionPolicyName.SINGLE_TTL_EVICTION, |
| 217 | + HashZchEvictionPolicyName.PER_FEATURE_TTL_EVICTION, |
| 218 | + HashZchEvictionPolicyName.LRU_EVICTION, |
| 219 | + ): |
| 220 | + return HashZchThresholdEvictionModule(policy_name, none_throws(config)) |
| 221 | + else: |
| 222 | + return HashZchOptEvictionModule(policy_name) |
| 223 | + |
| 224 | + |
| 225 | +class HashZchEvictionModule(torch.nn.Module): |
| 226 | + """ |
| 227 | + This module manages the eviction of IDs from the ZCH table based on the selected eviction policy. |
| 228 | + Args: |
| 229 | + policy_name: an enum value that indicates the eviction policy to use. |
| 230 | + device: device of the tensor. |
| 231 | + config: an optional config required if threshold based eviction is selected. |
| 232 | + Example: |
| 233 | + module = HashZchEvictionModule(policy_name=HashZchEvictionPolicyName.LRU_EVICTION) |
| 234 | + """ |
| 235 | + |
| 236 | + def __init__( |
| 237 | + self, |
| 238 | + policy_name: HashZchEvictionPolicyName, |
| 239 | + device: torch.device, |
| 240 | + config: Optional[HashZchEvictionConfig], |
| 241 | + ) -> None: |
| 242 | + super().__init__() |
| 243 | + |
| 244 | + self._policy_name: HashZchEvictionPolicyName = policy_name |
| 245 | + self._device: torch.device = device |
| 246 | + self._eviction_module: torch.nn.Module = get_eviction_module( |
| 247 | + self._policy_name, config |
| 248 | + ) |
| 249 | + |
| 250 | + logger.info(f"HashZchEvictionModule: {self._policy_name=}, {self._device=}") |
| 251 | + |
| 252 | + def forward(self, feature: JaggedTensor) -> Tuple[Optional[torch.Tensor], int]: |
| 253 | + """ |
| 254 | + Args: |
| 255 | + feature: a jagged tensor that contains the input IDs, and their lengths and |
| 256 | + weights (feature split). |
| 257 | +
|
| 258 | + Returns: |
| 259 | + For threshold eviction, a tensor that contains the eviction score for each ID, plus an eviction threshold. Otherwise None and -1. |
| 260 | + """ |
| 261 | + return self._eviction_module(feature, self._device) |
0 commit comments