@@ -165,7 +165,7 @@ class PCovC(LinearClassifierMixin, _BasePCov):
165
165
n_components, or the lesser value of n_features and n_samples
166
166
if n_components is None.
167
167
168
- n_outputs : int
168
+ n_outputs_ : int
169
169
The number of outputs when ``fit`` is performed.
170
170
171
171
classifier : estimator object
@@ -280,7 +280,7 @@ def fit(self, X, Y, W=None):
280
280
281
281
check_classification_targets (Y )
282
282
self .classes_ = np .unique (Y )
283
- self .n_outputs = 1 if Y .ndim == 1 else Y .shape [1 ]
283
+ self .n_outputs_ = 1 if Y .ndim == 1 else Y .shape [1 ]
284
284
285
285
super ()._set_fit_params (X )
286
286
@@ -305,7 +305,7 @@ def fit(self, X, Y, W=None):
305
305
", or `precomputed`"
306
306
)
307
307
308
- multioutput = self .n_outputs != 1
308
+ multioutput = self .n_outputs_ != 1
309
309
precomputed = self .classifier == "precomputed"
310
310
311
311
if self .classifier is None or precomputed :
@@ -468,7 +468,7 @@ def decision_function(self, X=None, T=None):
468
468
if X is not None :
469
469
X = validate_data (self , X , reset = False )
470
470
471
- if self .n_outputs == 1 :
471
+ if self .n_outputs_ == 1 :
472
472
# Or self.classifier_.decision_function(X @ self.pxt_)
473
473
return X @ self .pxz_ + self .classifier_ .intercept_
474
474
else :
@@ -479,7 +479,7 @@ def decision_function(self, X=None, T=None):
479
479
else :
480
480
T = check_array (T )
481
481
482
- if self .n_outputs == 1 :
482
+ if self .n_outputs_ == 1 :
483
483
return T @ self .ptz_ + self .classifier_ .intercept_
484
484
else :
485
485
return [
0 commit comments