|
| 1 | +/* |
| 2 | + * Copyright 2025-present ScyllaDB |
| 3 | + * SPDX-License-Identifier: LicenseRef-ScyllaDB-Source-Available-1.0 |
| 4 | + */ |
| 5 | + |
| 6 | +use crate::common::*; |
| 7 | +use crate::tests::*; |
| 8 | +use scylla::client::session::Session; |
| 9 | +use std::time::Duration; |
| 10 | +use tracing::info; |
| 11 | + |
| 12 | +pub(crate) async fn new() -> TestCase { |
| 13 | + let timeout = Duration::from_secs(30); |
| 14 | + TestCase::empty() |
| 15 | + .with_init(timeout, init) |
| 16 | + .with_cleanup(timeout, cleanup) |
| 17 | + .with_test( |
| 18 | + "similarity_cosine_function_with_single_column_partition_key", |
| 19 | + timeout, |
| 20 | + similarity_cosine_function_with_single_column_partition_key, |
| 21 | + ) |
| 22 | + .with_test( |
| 23 | + "similarity_euclidean_function_with_single_column_partition_key", |
| 24 | + timeout, |
| 25 | + similarity_euclidean_function_with_single_column_partition_key, |
| 26 | + ) |
| 27 | + .with_test( |
| 28 | + "similarity_dot_product_function_with_single_column_partition_key", |
| 29 | + timeout, |
| 30 | + similarity_dot_product_function_with_single_column_partition_key, |
| 31 | + ) |
| 32 | + .with_test( |
| 33 | + "vector_similarity_function_with_clustering_key", |
| 34 | + timeout, |
| 35 | + vector_similarity_function_with_clustering_key, |
| 36 | + ) |
| 37 | + .with_test( |
| 38 | + "vector_similarity_function_with_multi_column_partition_key", |
| 39 | + timeout, |
| 40 | + vector_similarity_function_with_multi_column_partition_key, |
| 41 | + ) |
| 42 | +} |
| 43 | + |
| 44 | +/// Normilized (L2 norm = 1) embeddings for testing |
| 45 | +pub(crate) static EMBEDDINGS: [[f32; 3]; 3] = [ |
| 46 | + [0.267261, 0.534522, 0.801784], |
| 47 | + [0.455842, 0.569803, 0.683763], |
| 48 | + [0.502571, 0.574366, 0.646162], |
| 49 | +]; |
| 50 | + |
| 51 | +/// Expected results for similarity functions when querying with [1.0, 0.0, -1.0] |
| 52 | +pub(crate) const SIMILARITY_RESULTS: [(&str, [(i32, f32); 3]); 3] = [ |
| 53 | + ("cosine", [(2, 1.1015341), (1, 1.1611645), (0, 1.3779647)]), |
| 54 | + ("euclidean", [(2, 3.2871814), (1, 3.4558413), (0, 4.069046)]), |
| 55 | + ( |
| 56 | + "dot_product", |
| 57 | + [(2, 1.1435909), (1, 1.227921), (0, 1.534523)], |
| 58 | + ), |
| 59 | +]; |
| 60 | + |
| 61 | +async fn assert_similarity_function_results( |
| 62 | + session: &Session, |
| 63 | + table: &str, |
| 64 | + key_column: &str, |
| 65 | + similarity_function: &str, |
| 66 | +) { |
| 67 | + let results = get_query_results( |
| 68 | + format!( |
| 69 | + "SELECT {key_column}, similarity_{similarity_function}(v, [1.0, 0.0, -1.0]) FROM {table} ORDER BY v ANN OF [1.0, 0.0, -1.0] LIMIT 5" |
| 70 | + ), |
| 71 | + session, |
| 72 | + ) |
| 73 | + .await; |
| 74 | + let rows = results.rows::<(i32, f32)>().expect("failed to get rows"); |
| 75 | + assert_eq!(rows.rows_remaining(), 3); |
| 76 | + |
| 77 | + let (_, expected_distances) = SIMILARITY_RESULTS |
| 78 | + .iter() |
| 79 | + .find(|(name, _)| *name == similarity_function) |
| 80 | + .expect("similarity function not found"); |
| 81 | + for (i, row) in rows.enumerate() { |
| 82 | + let row = row.expect("failed to get row"); |
| 83 | + let (key, distance) = row; |
| 84 | + assert_eq!( |
| 85 | + (key, distance), |
| 86 | + expected_distances[i], |
| 87 | + "Row {i} does not match expected result" |
| 88 | + ); |
| 89 | + } |
| 90 | +} |
| 91 | + |
| 92 | +async fn similarity_cosine_function_with_single_column_partition_key(actors: TestActors) { |
| 93 | + info!("started"); |
| 94 | + |
| 95 | + let (session, client) = prepare_connection(&actors).await; |
| 96 | + |
| 97 | + let keyspace = create_keyspace(&session).await; |
| 98 | + let table = create_table(&session, "pk INT PRIMARY KEY, v VECTOR<FLOAT, 3>", None).await; |
| 99 | + |
| 100 | + // Insert test data |
| 101 | + for (i, embedding) in EMBEDDINGS.into_iter().enumerate() { |
| 102 | + session |
| 103 | + .query_unpaged( |
| 104 | + format!("INSERT INTO {table} (pk, v) VALUES (?, ?)"), |
| 105 | + (i as i32, embedding.as_slice()), |
| 106 | + ) |
| 107 | + .await |
| 108 | + .expect("failed to insert data"); |
| 109 | + } |
| 110 | + |
| 111 | + let similarity_function = "cosine"; |
| 112 | + let index = create_index( |
| 113 | + &session, |
| 114 | + &client, |
| 115 | + &table, |
| 116 | + "v", |
| 117 | + Some(format!( |
| 118 | + "{{'similarity_function' : '{similarity_function}'}}" |
| 119 | + )), |
| 120 | + ) |
| 121 | + .await; |
| 122 | + |
| 123 | + wait_for( |
| 124 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 125 | + "Waiting for 3 vectors to be indexed", |
| 126 | + Duration::from_secs(5), |
| 127 | + ) |
| 128 | + .await; |
| 129 | + |
| 130 | + // Check if the query returns the expected distances |
| 131 | + assert_similarity_function_results(&session, &table, "pk", similarity_function).await; |
| 132 | + |
| 133 | + // Drop keyspace |
| 134 | + session |
| 135 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 136 | + .await |
| 137 | + .expect("failed to drop a keyspace"); |
| 138 | + |
| 139 | + info!("finished"); |
| 140 | +} |
| 141 | + |
| 142 | +async fn similarity_euclidean_function_with_single_column_partition_key(actors: TestActors) { |
| 143 | + info!("started"); |
| 144 | + |
| 145 | + let (session, client) = prepare_connection(&actors).await; |
| 146 | + |
| 147 | + let keyspace = create_keyspace(&session).await; |
| 148 | + let table = create_table(&session, "pk INT PRIMARY KEY, v VECTOR<FLOAT, 3>", None).await; |
| 149 | + |
| 150 | + // Insert test data |
| 151 | + for (i, embedding) in EMBEDDINGS.into_iter().enumerate() { |
| 152 | + session |
| 153 | + .query_unpaged( |
| 154 | + format!("INSERT INTO {table} (pk, v) VALUES (?, ?)"), |
| 155 | + (i as i32, embedding.as_slice()), |
| 156 | + ) |
| 157 | + .await |
| 158 | + .expect("failed to insert data"); |
| 159 | + } |
| 160 | + |
| 161 | + let similarity_function = "euclidean"; |
| 162 | + let index = create_index( |
| 163 | + &session, |
| 164 | + &client, |
| 165 | + &table, |
| 166 | + "v", |
| 167 | + Some(format!( |
| 168 | + "{{'similarity_function' : '{similarity_function}'}}" |
| 169 | + )), |
| 170 | + ) |
| 171 | + .await; |
| 172 | + |
| 173 | + wait_for( |
| 174 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 175 | + "Waiting for 3 vectors to be indexed", |
| 176 | + Duration::from_secs(5), |
| 177 | + ) |
| 178 | + .await; |
| 179 | + |
| 180 | + // Check if the query returns the expected distances |
| 181 | + assert_similarity_function_results(&session, &table, "pk", similarity_function).await; |
| 182 | + |
| 183 | + // Drop keyspace |
| 184 | + session |
| 185 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 186 | + .await |
| 187 | + .expect("failed to drop a keyspace"); |
| 188 | + |
| 189 | + info!("finished"); |
| 190 | +} |
| 191 | + |
| 192 | +async fn similarity_dot_product_function_with_single_column_partition_key(actors: TestActors) { |
| 193 | + info!("started"); |
| 194 | + |
| 195 | + let (session, client) = prepare_connection(&actors).await; |
| 196 | + |
| 197 | + let keyspace = create_keyspace(&session).await; |
| 198 | + let table = create_table(&session, "pk INT PRIMARY KEY, v VECTOR<FLOAT, 3>", None).await; |
| 199 | + |
| 200 | + // Insert test data |
| 201 | + for (i, embedding) in EMBEDDINGS.into_iter().enumerate() { |
| 202 | + session |
| 203 | + .query_unpaged( |
| 204 | + format!("INSERT INTO {table} (pk, v) VALUES (?, ?)"), |
| 205 | + (i as i32, embedding.as_slice()), |
| 206 | + ) |
| 207 | + .await |
| 208 | + .expect("failed to insert data"); |
| 209 | + } |
| 210 | + |
| 211 | + let similarity_function = "dot_product"; |
| 212 | + let index = create_index( |
| 213 | + &session, |
| 214 | + &client, |
| 215 | + &table, |
| 216 | + "v", |
| 217 | + Some(format!( |
| 218 | + "{{'similarity_function' : '{similarity_function}'}}" |
| 219 | + )), |
| 220 | + ) |
| 221 | + .await; |
| 222 | + |
| 223 | + wait_for( |
| 224 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 225 | + "Waiting for 3 vectors to be indexed", |
| 226 | + Duration::from_secs(5), |
| 227 | + ) |
| 228 | + .await; |
| 229 | + |
| 230 | + // Check if the query returns the expected distances |
| 231 | + assert_similarity_function_results(&session, &table, "pk", similarity_function).await; |
| 232 | + |
| 233 | + // Drop keyspace |
| 234 | + session |
| 235 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 236 | + .await |
| 237 | + .expect("failed to drop a keyspace"); |
| 238 | + |
| 239 | + info!("finished"); |
| 240 | +} |
| 241 | + |
| 242 | +async fn vector_similarity_function_with_clustering_key(actors: TestActors) { |
| 243 | + info!("started"); |
| 244 | + |
| 245 | + let (session, client) = prepare_connection(&actors).await; |
| 246 | + |
| 247 | + let keyspace = create_keyspace(&session).await; |
| 248 | + let table = create_table( |
| 249 | + &session, |
| 250 | + "pk INT, ck INT, v VECTOR<FLOAT, 3>, PRIMARY KEY (pk, ck)", |
| 251 | + None, |
| 252 | + ) |
| 253 | + .await; |
| 254 | + |
| 255 | + // Insert test data |
| 256 | + for (i, embedding) in EMBEDDINGS.into_iter().enumerate() { |
| 257 | + session |
| 258 | + .query_unpaged( |
| 259 | + format!("INSERT INTO {table} (pk, ck, v) VALUES (?, ?, ?)"), |
| 260 | + (123, i as i32, &embedding.as_slice()), |
| 261 | + ) |
| 262 | + .await |
| 263 | + .expect("failed to insert data"); |
| 264 | + } |
| 265 | + |
| 266 | + let similarity_function = "euclidean"; |
| 267 | + let index = create_index( |
| 268 | + &session, |
| 269 | + &client, |
| 270 | + &table, |
| 271 | + "v", |
| 272 | + Some(format!( |
| 273 | + "{{'similarity_function' : '{similarity_function}'}}" |
| 274 | + )), |
| 275 | + ) |
| 276 | + .await; |
| 277 | + |
| 278 | + wait_for( |
| 279 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 280 | + "Waiting for 3 vectors to be indexed", |
| 281 | + Duration::from_secs(5), |
| 282 | + ) |
| 283 | + .await; |
| 284 | + |
| 285 | + // Check if the query returns the expected distances |
| 286 | + assert_similarity_function_results(&session, &table, "ck", similarity_function).await; |
| 287 | + |
| 288 | + // Drop keyspace |
| 289 | + session |
| 290 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 291 | + .await |
| 292 | + .expect("failed to drop a keyspace"); |
| 293 | + |
| 294 | + info!("finished"); |
| 295 | +} |
| 296 | + |
| 297 | +async fn vector_similarity_function_with_multi_column_partition_key(actors: TestActors) { |
| 298 | + info!("started"); |
| 299 | + |
| 300 | + let (session, client) = prepare_connection(&actors).await; |
| 301 | + |
| 302 | + let keyspace = create_keyspace(&session).await; |
| 303 | + let table = create_table( |
| 304 | + &session, |
| 305 | + "pk1 INT, pk2 INT, v VECTOR<FLOAT, 3>, PRIMARY KEY ((pk1, pk2))", |
| 306 | + None, |
| 307 | + ) |
| 308 | + .await; |
| 309 | + |
| 310 | + // Insert test data |
| 311 | + for (i, embedding) in EMBEDDINGS.into_iter().enumerate() { |
| 312 | + session |
| 313 | + .query_unpaged( |
| 314 | + format!("INSERT INTO {table} (pk1, pk2, v) VALUES (?, ?, ?)"), |
| 315 | + (123, i as i32, &embedding.as_slice()), |
| 316 | + ) |
| 317 | + .await |
| 318 | + .expect("failed to insert data"); |
| 319 | + } |
| 320 | + |
| 321 | + let similarity_function = "euclidean"; |
| 322 | + let index = create_index( |
| 323 | + &session, |
| 324 | + &client, |
| 325 | + &table, |
| 326 | + "v", |
| 327 | + Some(format!( |
| 328 | + "{{'similarity_function' : '{similarity_function}'}}" |
| 329 | + )), |
| 330 | + ) |
| 331 | + .await; |
| 332 | + |
| 333 | + wait_for( |
| 334 | + || async { client.count(&index.keyspace, &index.index).await == Some(3) }, |
| 335 | + "Waiting for 3 vectors to be indexed", |
| 336 | + Duration::from_secs(5), |
| 337 | + ) |
| 338 | + .await; |
| 339 | + |
| 340 | + // Check if the query returns the expected distances |
| 341 | + assert_similarity_function_results(&session, &table, "pk2", similarity_function).await; |
| 342 | + |
| 343 | + // Drop keyspace |
| 344 | + session |
| 345 | + .query_unpaged(format!("DROP KEYSPACE {keyspace}"), ()) |
| 346 | + .await |
| 347 | + .expect("failed to drop a keyspace"); |
| 348 | + |
| 349 | + info!("finished"); |
| 350 | +} |
0 commit comments