Skip to content

Commit a437ba8

Browse files
authored
Removes normalize attributes (deprecated) (#113)
* Removes normalize attributes (deprecated) * Update appveyor.yml * Update appveyor.yml
1 parent c23988e commit a437ba8

File tree

3 files changed

+9
-16
lines changed

3 files changed

+9
-16
lines changed

_unittests/ut_mlmodel/test_quantile_regression.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -61,7 +61,7 @@ def test_quantile_regression_intercept(self):
6161
self.assertNotEqual(clr.intercept_, 0)
6262
self.assertNotEqual(clq.intercept_, 0)
6363
self.assertEqualArray(clr.intercept_, clq.intercept_)
64-
self.assertEqualArray(clr.coef_, clq.coef_)
64+
self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10)
6565

6666
@unittest.skipIf(
6767
compare_module_version(sklver, "0.24") == -1,
@@ -77,7 +77,7 @@ def test_quantile_regression_intercept_positive(self):
7777
self.assertNotEqual(clr.intercept_, 0)
7878
self.assertNotEqual(clq.intercept_, 0)
7979
self.assertEqualArray(clr.intercept_, clq.intercept_)
80-
self.assertEqualArray(clr.coef_, clq.coef_)
80+
self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10)
8181
self.assertGreater(clr.coef_.min(), 0)
8282
self.assertGreater(clq.coef_.min(), 0)
8383

@@ -92,7 +92,7 @@ def test_quantile_regression_intercept_weights(self):
9292
self.assertNotEqual(clr.intercept_, 0)
9393
self.assertNotEqual(clq.intercept_, 0)
9494
self.assertEqualArray(clr.intercept_, clq.intercept_)
95-
self.assertEqualArray(clr.coef_, clq.coef_)
95+
self.assertEqualArray(clr.coef_, clq.coef_, atol=1e-10)
9696

9797
def test_quantile_regression_diff(self):
9898
X = numpy.array([[0.1], [0.2], [0.3], [0.4], [0.5]])

appveyor.yml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ init:
1212
install:
1313
- "%PYTHON%\\python -m pip install --upgrade pip"
1414
# for many packages
15-
- pip install llvmlite numba
15+
- "%PYTHON%\\Scripts\\pip install llvmlite numba"
1616
- "%PYTHON%\\Scripts\\pip install -r requirements-win.txt"
1717
# install precompiled versions not available on pypi
1818
- "%PYTHON%\\Scripts\\pip install torch torchvision torchaudio"

mlinsights/mlmodel/quantile_regression.py

Lines changed: 5 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -29,21 +29,14 @@ class QuantileLinearRegression(LinearRegression):
2929
value.
3030
"""
3131

32-
def __init__(self, fit_intercept=True, normalize=False, copy_X=True,
32+
def __init__(self, fit_intercept=True, copy_X=True,
3333
n_jobs=1, delta=0.0001, max_iter=10, quantile=0.5,
3434
positive=False, verbose=False):
3535
"""
3636
:param fit_intercept: boolean, optional, default True
3737
whether to calculate the intercept for this model. If set
3838
to False, no intercept will be used in calculations
3939
(e.g. data is expected to be already centered).
40-
:param normalize: boolean, optional, default False
41-
This parameter is ignored when ``fit_intercept`` is set to False.
42-
If True, the regressors X will be normalized before regression by
43-
subtracting the mean and dividing by the l2-norm.
44-
If you wish to standardize, please use
45-
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on
46-
an estimator with ``normalize=False``.
4740
:param copy_X: boolean, optional, default True
4841
If True, X will be copied; else, it may be overwritten.
4942
:param n_jobs: int, optional, default 1
@@ -65,12 +58,12 @@ def __init__(self, fit_intercept=True, normalize=False, copy_X=True,
6558
"""
6659
try:
6760
LinearRegression.__init__(
68-
self, fit_intercept=fit_intercept, normalize=normalize,
61+
self, fit_intercept=fit_intercept,
6962
copy_X=copy_X, n_jobs=n_jobs, positive=positive)
7063
except TypeError:
7164
# scikit-learn<0.24
7265
LinearRegression.__init__(
73-
self, fit_intercept=fit_intercept, normalize=normalize,
66+
self, fit_intercept=fit_intercept,
7467
copy_X=copy_X, n_jobs=n_jobs)
7568
self.max_iter = max_iter
7669
self.verbose = verbose
@@ -140,12 +133,12 @@ def compute_z(Xm, beta, Y, W, delta=0.0001):
140133

141134
try:
142135
clr = LinearRegression(fit_intercept=False, copy_X=self.copy_X,
143-
n_jobs=self.n_jobs, normalize=self.normalize,
136+
n_jobs=self.n_jobs,
144137
positive=self.positive)
145138
except AttributeError:
146139
# scikit-learn<0.24
147140
clr = LinearRegression(fit_intercept=False, copy_X=self.copy_X,
148-
n_jobs=self.n_jobs, normalize=self.normalize)
141+
n_jobs=self.n_jobs)
149142

150143
W = numpy.ones(X.shape[0]) if sample_weight is None else sample_weight
151144
self.n_iter_ = 0

0 commit comments

Comments
 (0)