inside environment around geomas directory
pip install -e .To check core libraries and CUDA device:
geomas healthRecursively walks through source directory and produce destination directory with json versions of initial documents
geomas makedataset ./source ./destinationCheck that all services are UP:
docker ps -a | grep mlflowThere must be 3 of them:
mlflow_postgres– postgres database for metadata on port5432mlflow_minio– local S3 for heavy artifacts on port9000mlflow-mlflow-1– MLFlow server itself on port5000
In geomas directory there must be .env file with content:
MLFLOW_TRACKING_URI=http://127.0.0.1:5000
MLFLOW_S3_ENDPOINT_URL=http://127.0.0.1:9000
AWS_ACCESS_KEY_ID=***
AWS_SECRET_ACCESS_KEY=***export CUDA_VISIBLE_DEVICES=1
geomas train MODEL DATASET_PATHModel could be any of:
"gpt-oss": "unsloth/gpt-oss-20b",
"gemma-3n": "unsloth/gemma-3n-E4B-unsloth-bnb-4bit",
"mistral-7b": "mistral-7b-v0.3-bnb-4bit",
"gemma-7b": "gemma-7b-bnb-4bit",make lint # Check code with Ruff
make fix # Auto-fix lint errors
make format # Format code (Ruff)
make sort # Sort imports
make all # Run all checks (lint + fix + format)