@@ -3,45 +3,60 @@ test_that('adding a new model', {
33
44 mod_items <- get_model_env() | > rlang :: env_names()
55 sponges <- grep(" sponge" , mod_items , value = TRUE )
6- exp_obj <- c(' sponge_modes' , ' sponge_fit' , ' sponge_args' ,
7- ' sponge_predict' , ' sponge_pkgs' , ' sponge' )
6+ exp_obj <- c(
7+ ' sponge_modes' ,
8+ ' sponge_fit' ,
9+ ' sponge_args' ,
10+ ' sponge_predict' ,
11+ ' sponge_pkgs' ,
12+ ' sponge'
13+ )
814 expect_equal(sort(sponges ), sort(exp_obj ))
915
1016 expect_equal(
1117 get_from_env(" sponge" ),
1218 tibble(engine = character (0 ), mode = character (0 ))
1319 )
1420
15- expect_equal(
16- get_from_env(" sponge_pkgs" ),
17- tibble(engine = character (0 ), pkg = list (), mode = character (0 ))
18- )
19-
20- expect_equal(
21- get_from_env(" sponge_modes" ), " unknown"
22- )
23-
24- expect_equal(
25- get_from_env(" sponge_args" ),
26- dplyr :: tibble(engine = character (0 ), parsnip = character (0 ),
27- original = character (0 ), func = vector(" list" ),
28- has_submodel = logical (0 ))
29- )
30-
31- expect_equal(
32- get_from_env(" sponge_fit" ),
33- tibble(engine = character (0 ), mode = character (0 ), value = vector(" list" ))
34- )
35-
36- expect_equal(
37- get_from_env(" sponge_predict" ),
38- tibble(engine = character (0 ), mode = character (0 ),
39- type = character (0 ), value = vector(" list" ))
40- )
41-
42- expect_snapshot(error = TRUE , set_new_model())
43- expect_snapshot(error = TRUE , set_new_model(2 ))
44- expect_snapshot(error = TRUE , set_new_model(letters [1 : 2 ]))
21+ expect_equal(
22+ get_from_env(" sponge_pkgs" ),
23+ tibble(engine = character (0 ), pkg = list (), mode = character (0 ))
24+ )
25+
26+ expect_equal(
27+ get_from_env(" sponge_modes" ),
28+ " unknown"
29+ )
30+
31+ expect_equal(
32+ get_from_env(" sponge_args" ),
33+ dplyr :: tibble(
34+ engine = character (0 ),
35+ parsnip = character (0 ),
36+ original = character (0 ),
37+ func = vector(" list" ),
38+ has_submodel = logical (0 )
39+ )
40+ )
41+
42+ expect_equal(
43+ get_from_env(" sponge_fit" ),
44+ tibble(engine = character (0 ), mode = character (0 ), value = vector(" list" ))
45+ )
46+
47+ expect_equal(
48+ get_from_env(" sponge_predict" ),
49+ tibble(
50+ engine = character (0 ),
51+ mode = character (0 ),
52+ type = character (0 ),
53+ value = vector(" list" )
54+ )
55+ )
56+
57+ expect_snapshot(error = TRUE , set_new_model())
58+ expect_snapshot(error = TRUE , set_new_model(2 ))
59+ expect_snapshot(error = TRUE , set_new_model(letters [1 : 2 ]))
4560})
4661
4762
@@ -58,7 +73,6 @@ test_that('adding a new mode', {
5873 expect_equal(get_from_env(" sponge_modes" ), c(" unknown" , " classification" ))
5974
6075 expect_snapshot(error = TRUE , set_model_mode(" sponge" ))
61-
6276})
6377
6478
@@ -75,7 +89,10 @@ test_that('adding a new engine', {
7589 expect_equal(get_from_env(" sponge_modes" ), c(" unknown" , " classification" ))
7690
7791 expect_snapshot(error = TRUE , set_model_engine(" sponge" , eng = " gum" ))
78- expect_snapshot(error = TRUE , set_model_engine(" sponge" , mode = " classification" ))
92+ expect_snapshot(
93+ error = TRUE ,
94+ set_model_engine(" sponge" , mode = " classification" )
95+ )
7996 expect_snapshot(
8097 error = TRUE ,
8198 set_model_engine(" sponge" , mode = " regression" , eng = " gum" )
@@ -90,7 +107,10 @@ test_that('adding a new package', {
90107
91108 expect_snapshot(error = TRUE , set_dependency(" sponge" , " gum" , letters [1 : 2 ]))
92109 expect_snapshot(error = TRUE , set_dependency(" sponge" , " gummies" , " trident" ))
93- expect_snapshot(error = TRUE , set_dependency(" sponge" , " gum" , " trident" , mode = " regression" ))
110+ expect_snapshot(
111+ error = TRUE ,
112+ set_dependency(" sponge" , " gum" , " trident" , mode = " regression" )
113+ )
94114
95115 expect_equal(
96116 get_from_env(" sponge_pkgs" ),
@@ -100,16 +120,20 @@ test_that('adding a new package', {
100120 set_dependency(" sponge" , " gum" , " juicy-fruit" , mode = " classification" )
101121 expect_equal(
102122 get_from_env(" sponge_pkgs" ),
103- tibble(engine = " gum" ,
104- pkg = list (c(" trident" , " juicy-fruit" )),
105- mode = " classification" )
123+ tibble(
124+ engine = " gum" ,
125+ pkg = list (c(" trident" , " juicy-fruit" )),
126+ mode = " classification"
127+ )
106128 )
107129
108130 expect_equal(
109131 get_dependency(" sponge" ),
110- tibble(engine = " gum" ,
111- pkg = list (c(" trident" , " juicy-fruit" )),
112- mode = " classification" )
132+ tibble(
133+ engine = " gum" ,
134+ pkg = list (c(" trident" , " juicy-fruit" )),
135+ mode = " classification"
136+ )
113137 )
114138})
115139
@@ -140,9 +164,13 @@ test_that('adding a new argument', {
140164
141165 expect_equal(
142166 get_from_env(" sponge_args" ),
143- tibble(engine = " gum" , parsnip = " modeling" , original = " modelling" ,
144- func = list (list (pkg = " foo" , fun = " bar" )),
145- has_submodel = FALSE )
167+ tibble(
168+ engine = " gum" ,
169+ parsnip = " modeling" ,
170+ original = " modelling" ,
171+ func = list (list (pkg = " foo" , fun = " bar" )),
172+ has_submodel = FALSE
173+ )
146174 )
147175
148176 expect_snapshot(
@@ -252,7 +280,6 @@ test_that('adding a new argument', {
252280})
253281
254282
255-
256283# ------------------------------------------------------------------------------
257284
258285test_that(' adding a new fit' , {
@@ -273,7 +300,7 @@ test_that('adding a new fit', {
273300
274301 fit_env_data <- get_from_env(" sponge_fit" )
275302 expect_equal(
276- fit_env_data [ 1 : 2 ],
303+ fit_env_data [1 : 2 ],
277304 tibble(engine = " gum" , mode = " classification" )
278305 )
279306
@@ -405,7 +432,7 @@ test_that('adding a new predict method', {
405432
406433 pred_env_data <- get_from_env(" sponge_predict" )
407434 expect_equal(
408- pred_env_data [ 1 : 3 ],
435+ pred_env_data [1 : 3 ],
409436 tibble(engine = " gum" , mode = " classification" , type = " class" )
410437 )
411438
@@ -415,7 +442,7 @@ test_that('adding a new predict method', {
415442 )
416443
417444 expect_equal(
418- get_pred_type(" sponge" , " class" )[ 1 : 3 ],
445+ get_pred_type(" sponge" , " class" )[1 : 3 ],
419446 tibble(engine = " gum" , mode = " classification" , type = " class" )
420447 )
421448
@@ -446,7 +473,6 @@ test_that('adding a new predict method', {
446473 )
447474 )
448475
449-
450476 expect_snapshot(
451477 error = TRUE ,
452478 set_pred(
@@ -520,16 +546,13 @@ test_that('adding a new predict method', {
520546 value = class_vals_2
521547 )
522548 )
523-
524549})
525550
526551
527-
528552test_that(' showing model info' , {
529553 expect_snapshot(show_model_info(" rand_forest" ))
530554
531555 # ensure that we don't mention case weight support when the
532556 # notation would be ambiguous (#1000)
533557 expect_snapshot(show_model_info(" mlp" ))
534558})
535-
0 commit comments