diff --git a/.github/workflows/pkgdown.yaml b/.github/workflows/pkgdown.yaml
index da6adfff2..e51edc1be 100644
--- a/.github/workflows/pkgdown.yaml
+++ b/.github/workflows/pkgdown.yaml
@@ -36,15 +36,9 @@ jobs:
extra-packages: any::pkgdown, local::.
needs: website
- - name: Install Miniconda
+ - name: Install TensorFlow/Keras
run: |
- reticulate::install_miniconda()
- shell: Rscript {0}
-
- - name: Install TensorFlow
- run: |
- reticulate::conda_create('r-reticulate', packages = c('python==3.11'))
- tensorflow::install_tensorflow(version='2.16')
+ keras::install_keras()
shell: Rscript {0}
- name: Install Torch
diff --git a/man/details_C5_rules_C5.0.Rd b/man/details_C5_rules_C5.0.Rd
index 9708e75d3..63e5b3c9f 100644
--- a/man/details_C5_rules_C5.0.Rd
+++ b/man/details_C5_rules_C5.0.Rd
@@ -71,6 +71,20 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("C5_rules_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{auto_ml() |>
- set_engine("h2o") |>
- set_mode("regression") |>
+\if{html}{\out{
}}\preformatted{library(agua)
+
+auto_ml() |>
+ set_engine("h2o") |>
+ set_mode("regression") |>
translate()
}\if{html}{\out{
}}
@@ -93,6 +95,22 @@ when R is terminated. To manually stop the h2o server, run
\code{h2o::h2o.shutdown()}.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("auto_ml_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 4 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
Models fitted with this engine may require native serialization methods
diff --git a/man/details_bag_mars_earth.Rd b/man/details_bag_mars_earth.Rd
index af4c79590..52f80bd01 100644
--- a/man/details_bag_mars_earth.Rd
+++ b/man/details_bag_mars_earth.Rd
@@ -103,6 +103,21 @@ Note that the \code{earth} package documentation has: “In the current
implementation, \emph{building models with weights can be slow}.”
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("bag_mars_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Breiman, L. 1996. “Bagging predictors”. Machine Learning. 24 (2):
diff --git a/man/details_bag_mlp_nnet.Rd b/man/details_bag_mlp_nnet.Rd
index ee3e043d5..01f28b580 100644
--- a/man/details_bag_mlp_nnet.Rd
+++ b/man/details_bag_mlp_nnet.Rd
@@ -93,6 +93,21 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("bag_mlp_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Breiman L. 1996. “Bagging predictors”. Machine Learning. 24 (2):
diff --git a/man/details_bag_tree_C5.0.Rd b/man/details_bag_tree_C5.0.Rd
index 35ff7bc55..a40771fdb 100644
--- a/man/details_bag_tree_C5.0.Rd
+++ b/man/details_bag_tree_C5.0.Rd
@@ -61,6 +61,18 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("bag_mars_predict") |>
+ dplyr::filter(engine == "C5.0") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 0 x 2
+## # i 2 variables: mode , type
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Breiman, L. 1996. “Bagging predictors”. Machine Learning. 24 (2):
diff --git a/man/details_bag_tree_rpart.Rd b/man/details_bag_tree_rpart.Rd
index bb8aca291..43f67a233 100644
--- a/man/details_bag_tree_rpart.Rd
+++ b/man/details_bag_tree_rpart.Rd
@@ -131,6 +131,18 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("bag_mars_predict") |>
+ dplyr::filter(engine == "rpart") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 0 x 2
+## # i 2 variables: mode , type
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
Predictions of type \code{"time"} are predictions of the median survival
diff --git a/man/details_bart_dbarts.Rd b/man/details_bart_dbarts.Rd
index 53b80fa05..352bc0467 100644
--- a/man/details_bart_dbarts.Rd
+++ b/man/details_bart_dbarts.Rd
@@ -121,6 +121,25 @@ convert factor columns to indicators.
indicators if the user does not create them first.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("bart_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 9 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 regression conf_int
+## 4 regression pred_int
+## 5 classification class
+## 6 classification prob
+## # i 3 more rows
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Chipman, George, McCulloch. “BART: Bayesian additive regression
diff --git a/man/details_boost_tree_C5.0.Rd b/man/details_boost_tree_C5.0.Rd
index ec57afb78..a388662a8 100644
--- a/man/details_boost_tree_C5.0.Rd
+++ b/man/details_boost_tree_C5.0.Rd
@@ -68,6 +68,22 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("boost_tree_predict") |>
+ dplyr::filter(engine == "C5.0") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_boost_tree_h2o.Rd b/man/details_boost_tree_h2o.Rd
index 1d1233c4e..94ad47e74 100644
--- a/man/details_boost_tree_h2o.Rd
+++ b/man/details_boost_tree_h2o.Rd
@@ -156,6 +156,26 @@ to \code{TRUE}. For engines that support the proportion interpretation
within \verb{[0, 1]}.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("boost_tree_predict") |>
+ dplyr::filter(stringr::str_starts(engine, "h2o")) |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 8 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+## 5 regression numeric
+## 6 regression raw
+## # i 2 more rows
+}\if{html}{\out{
}}
+}
+
\subsection{Initializing h2o}{
To use the h2o engine with tidymodels, please run \code{h2o::h2o.init()}
diff --git a/man/details_boost_tree_lightgbm.Rd b/man/details_boost_tree_lightgbm.Rd
index f9bfee657..6c6e30625 100644
--- a/man/details_boost_tree_lightgbm.Rd
+++ b/man/details_boost_tree_lightgbm.Rd
@@ -160,6 +160,23 @@ to \code{TRUE}. For engines that support the proportion interpretation
within \verb{[0, 1]}.
}
+}
+
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("boost_tree_predict") |>
+ dplyr::filter(engine == "lightgbm") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 4 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+## 4 classification raw
+}\if{html}{\out{
}}
\subsection{Bagging}{
The \code{sample_size} argument is translated to the \code{bagging_fraction}
diff --git a/man/details_boost_tree_mboost.Rd b/man/details_boost_tree_mboost.Rd
index 1904e1992..64eb99572 100644
--- a/man/details_boost_tree_mboost.Rd
+++ b/man/details_boost_tree_mboost.Rd
@@ -60,6 +60,22 @@ Categorical predictors can be partitioned into groups of factor levels
are not required for this model.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("boost_tree_predict") |>
+ dplyr::filter(engine == "mboost") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 censored regression survival
+## 2 censored regression linear_pred
+## 3 censored regression time
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
Predictions of type \code{"time"} are predictions of the mean survival time.
diff --git a/man/details_boost_tree_spark.Rd b/man/details_boost_tree_spark.Rd
index aad9a6db4..794a6dbf9 100644
--- a/man/details_boost_tree_spark.Rd
+++ b/man/details_boost_tree_spark.Rd
@@ -118,6 +118,22 @@ Note that, for spark engines, the \code{case_weight} argument value should be
a character string to specify the column with the numeric case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("boost_tree_predict") |>
+ dplyr::filter(engine == "spark") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
For models created using the \code{"spark"} engine, there are several things
diff --git a/man/details_boost_tree_xgboost.Rd b/man/details_boost_tree_xgboost.Rd
index acac5c927..dca1b8843 100644
--- a/man/details_boost_tree_xgboost.Rd
+++ b/man/details_boost_tree_xgboost.Rd
@@ -131,6 +131,24 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("boost_tree_predict") |>
+ dplyr::filter(engine == "xgboost") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+## 5 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Sparse Data}{
This model can utilize sparse data during model fitting and prediction.
diff --git a/man/details_cubist_rules_Cubist.Rd b/man/details_cubist_rules_Cubist.Rd
index 72d295a40..174cb7275 100644
--- a/man/details_cubist_rules_Cubist.Rd
+++ b/man/details_cubist_rules_Cubist.Rd
@@ -59,6 +59,20 @@ Categorical predictors can be partitioned into groups of factor levels
are not required for this model.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("cubist_rules_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Quinlan R (1992). “Learning with Continuous Classes.” Proceedings of
diff --git a/man/details_decision_tree_C5.0.Rd b/man/details_decision_tree_C5.0.Rd
index 2b974ff6d..09a10abc2 100644
--- a/man/details_decision_tree_C5.0.Rd
+++ b/man/details_decision_tree_C5.0.Rd
@@ -59,6 +59,22 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("decision_tree_predict") |>
+ dplyr::filter(engine == "C5.0") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_decision_tree_partykit.Rd b/man/details_decision_tree_partykit.Rd
index 70aa62b87..0d0ef6027 100644
--- a/man/details_decision_tree_partykit.Rd
+++ b/man/details_decision_tree_partykit.Rd
@@ -125,6 +125,24 @@ Categorical predictors can be partitioned into groups of factor levels
are not required for this model.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("decision_tree_predict") |>
+ dplyr::filter(engine == "partykit") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 censored regression time
+## 2 censored regression survival
+## 3 regression numeric
+## 4 classification class
+## 5 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
Predictions of type \code{"time"} are predictions of the median survival
diff --git a/man/details_decision_tree_rpart.Rd b/man/details_decision_tree_rpart.Rd
index cbc4cca01..47ebe6149 100644
--- a/man/details_decision_tree_rpart.Rd
+++ b/man/details_decision_tree_rpart.Rd
@@ -119,6 +119,26 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("decision_tree_predict") |>
+ dplyr::filter(engine == "rpart") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 7 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+## 5 classification raw
+## 6 censored regression time
+## # i 1 more row
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
Predictions of type \code{"time"} are predictions of the mean survival time.
diff --git a/man/details_decision_tree_spark.Rd b/man/details_decision_tree_spark.Rd
index 02f24d75a..b108e808a 100644
--- a/man/details_decision_tree_spark.Rd
+++ b/man/details_decision_tree_spark.Rd
@@ -85,6 +85,22 @@ Note that, for spark engines, the \code{case_weight} argument value should be
a character string to specify the column with the numeric case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("decision_tree_predict") |>
+ dplyr::filter(engine == "spark") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
For models created using the \code{"spark"} engine, there are several things
diff --git a/man/details_discrim_flexible_earth.Rd b/man/details_discrim_flexible_earth.Rd
index 0dd803678..6ac950d75 100644
--- a/man/details_discrim_flexible_earth.Rd
+++ b/man/details_discrim_flexible_earth.Rd
@@ -73,6 +73,21 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_flexible_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Hastie, Tibshirani & Buja (1994) Flexible Discriminant Analysis by
diff --git a/man/details_discrim_linear_MASS.Rd b/man/details_discrim_linear_MASS.Rd
index bcb3f6463..9ea46e70f 100644
--- a/man/details_discrim_linear_MASS.Rd
+++ b/man/details_discrim_linear_MASS.Rd
@@ -53,6 +53,22 @@ before fitting the model.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_linear_predict") |>
+ dplyr::filter(engine == "MASS") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_discrim_linear_mda.Rd b/man/details_discrim_linear_mda.Rd
index 42222cd34..08f461523 100644
--- a/man/details_discrim_linear_mda.Rd
+++ b/man/details_discrim_linear_mda.Rd
@@ -64,6 +64,22 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_linear_predict") |>
+ dplyr::filter(engine == "mda") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Hastie, Tibshirani & Buja (1994) Flexible Discriminant Analysis by
diff --git a/man/details_discrim_linear_sda.Rd b/man/details_discrim_linear_sda.Rd
index 1160a7f25..12529370b 100644
--- a/man/details_discrim_linear_sda.Rd
+++ b/man/details_discrim_linear_sda.Rd
@@ -69,6 +69,22 @@ before fitting the model.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_linear_predict") |>
+ dplyr::filter(engine == "sda") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Ahdesmaki, A., and K. Strimmer. 2010. Feature selection in omics
diff --git a/man/details_discrim_linear_sparsediscrim.Rd b/man/details_discrim_linear_sparsediscrim.Rd
index f1f79bacb..6d1159eb1 100644
--- a/man/details_discrim_linear_sparsediscrim.Rd
+++ b/man/details_discrim_linear_sparsediscrim.Rd
@@ -72,6 +72,22 @@ before fitting the model.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_linear_predict") |>
+ dplyr::filter(engine == "sparsediscrim") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item \code{lda_diag()}: Dudoit, Fridlyand and Speed (2002) Comparison of
diff --git a/man/details_discrim_quad_MASS.Rd b/man/details_discrim_quad_MASS.Rd
index f4d201384..b3e499e1c 100644
--- a/man/details_discrim_quad_MASS.Rd
+++ b/man/details_discrim_quad_MASS.Rd
@@ -54,6 +54,22 @@ model.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_quad_predict") |>
+ dplyr::filter(engine == "MASS") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_discrim_quad_sparsediscrim.Rd b/man/details_discrim_quad_sparsediscrim.Rd
index f101499bb..5b21e05e1 100644
--- a/man/details_discrim_quad_sparsediscrim.Rd
+++ b/man/details_discrim_quad_sparsediscrim.Rd
@@ -71,6 +71,22 @@ model.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_quad_predict") |>
+ dplyr::filter(engine == "sparsediscrim") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item \code{qda_diag()}: Dudoit, Fridlyand and Speed (2002) Comparison of
diff --git a/man/details_discrim_regularized_klaR.Rd b/man/details_discrim_regularized_klaR.Rd
index 665403ba6..6ded96467 100644
--- a/man/details_discrim_regularized_klaR.Rd
+++ b/man/details_discrim_regularized_klaR.Rd
@@ -74,6 +74,21 @@ model.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("discrim_regularized_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Friedman, J (1989). Regularized Discriminant Analysis. \emph{Journal of the
diff --git a/man/details_gen_additive_mod_mgcv.Rd b/man/details_gen_additive_mod_mgcv.Rd
index 79e0bcbaa..863954922 100644
--- a/man/details_gen_additive_mod_mgcv.Rd
+++ b/man/details_gen_additive_mod_mgcv.Rd
@@ -144,6 +144,25 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("gen_additive_mod_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 7 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression conf_int
+## 3 regression raw
+## 4 classification class
+## 5 classification prob
+## 6 classification raw
+## # i 1 more row
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_linear_reg_brulee.Rd b/man/details_linear_reg_brulee.Rd
index f5dee53c6..13f5ab2b1 100644
--- a/man/details_linear_reg_brulee.Rd
+++ b/man/details_linear_reg_brulee.Rd
@@ -76,6 +76,20 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "brulee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 1 x 2
+## mode type
+##
+## 1 regression numeric
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_linear_reg_gee.Rd b/man/details_linear_reg_gee.Rd
index 92f34abb2..d9a15036f 100644
--- a/man/details_linear_reg_gee.Rd
+++ b/man/details_linear_reg_gee.Rd
@@ -105,6 +105,21 @@ that \code{predict()} can be used.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "gee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Liang, K.Y. and Zeger, S.L. (1986) Longitudinal data analysis using
diff --git a/man/details_linear_reg_glm.Rd b/man/details_linear_reg_glm.Rd
index cd3045462..a89f6cde0 100644
--- a/man/details_linear_reg_glm.Rd
+++ b/man/details_linear_reg_glm.Rd
@@ -81,6 +81,22 @@ give the number of trials when the response is the proportion of
successes: they would rarely be used for a Poisson GLM.”
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "glm") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression conf_int
+## 3 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_linear_reg_glmer.Rd b/man/details_linear_reg_glmer.Rd
index 88ac4854a..2c6c1fbef 100644
--- a/man/details_linear_reg_glmer.Rd
+++ b/man/details_linear_reg_glmer.Rd
@@ -126,6 +126,21 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "glmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item J Pinheiro, and D Bates. 2000. \emph{Mixed-effects models in S and S-PLUS}.
diff --git a/man/details_linear_reg_glmnet.Rd b/man/details_linear_reg_glmnet.Rd
index 6b3e31ece..b88072384 100644
--- a/man/details_linear_reg_glmnet.Rd
+++ b/man/details_linear_reg_glmnet.Rd
@@ -68,6 +68,21 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "glmnet") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{Sparse Data}{
This model can utilize sparse data during model fitting and prediction.
diff --git a/man/details_linear_reg_gls.Rd b/man/details_linear_reg_gls.Rd
index 4d6c9b207..e71b093c4 100644
--- a/man/details_linear_reg_gls.Rd
+++ b/man/details_linear_reg_gls.Rd
@@ -107,6 +107,21 @@ fit(gls_wflow, data = riesby)
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "gls") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item J Pinheiro, and D Bates. 2000. \emph{Mixed-effects models in S and S-PLUS}.
diff --git a/man/details_linear_reg_h2o.Rd b/man/details_linear_reg_h2o.Rd
index a53190643..c606094d7 100644
--- a/man/details_linear_reg_h2o.Rd
+++ b/man/details_linear_reg_h2o.Rd
@@ -71,6 +71,21 @@ By default, \code{\link[h2o:h2o.glm]{h2o::h2o.glm()}} uses the argument
\code{standardize = TRUE} to center and scale the data.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{Initializing h2o}{
To use the h2o engine with tidymodels, please run \code{h2o::h2o.init()}
diff --git a/man/details_linear_reg_keras.Rd b/man/details_linear_reg_keras.Rd
index f0b983492..4ffcc5ce6 100644
--- a/man/details_linear_reg_keras.Rd
+++ b/man/details_linear_reg_keras.Rd
@@ -60,6 +60,20 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "keras") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 1 x 2
+## mode type
+##
+## 1 regression numeric
+}\if{html}{\out{
}}
+}
+
\subsection{Examples}{
The “Fitting and Predicting with parsnip” article contains
diff --git a/man/details_linear_reg_lm.Rd b/man/details_linear_reg_lm.Rd
index 009bd5ed3..39e87525d 100644
--- a/man/details_linear_reg_lm.Rd
+++ b/man/details_linear_reg_lm.Rd
@@ -64,6 +64,23 @@ Depending on your application, the degrees of freedom for the model (and
other statistics) might be incorrect.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "lm") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 4 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression conf_int
+## 3 regression pred_int
+## 4 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_linear_reg_lme.Rd b/man/details_linear_reg_lme.Rd
index 1fb6310bb..e72ebbb90 100644
--- a/man/details_linear_reg_lme.Rd
+++ b/man/details_linear_reg_lme.Rd
@@ -115,6 +115,21 @@ fit(lme_wflow, data = riesby)
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "lme") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item J Pinheiro, and D Bates. 2000. \emph{Mixed-effects models in S and S-PLUS}.
diff --git a/man/details_linear_reg_lmer.Rd b/man/details_linear_reg_lmer.Rd
index 4adf0ad2b..1afd8ede6 100644
--- a/man/details_linear_reg_lmer.Rd
+++ b/man/details_linear_reg_lmer.Rd
@@ -118,6 +118,21 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "lmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item J Pinheiro, and D Bates. 2000. \emph{Mixed-effects models in S and S-PLUS}.
diff --git a/man/details_linear_reg_quantreg.Rd b/man/details_linear_reg_quantreg.Rd
index 1687abb67..82df7095e 100644
--- a/man/details_linear_reg_quantreg.Rd
+++ b/man/details_linear_reg_quantreg.Rd
@@ -138,6 +138,20 @@ formula method via \code{\link[=fit.model_spec]{fit()}}, parsnip will
convert factor columns to indicators.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "quantreg") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 1 x 2
+## mode type
+##
+## 1 quantile regression quantile
+}\if{html}{\out{
}}
+}
+
\subsection{Case weights}{
This model can utilize case weights during model fitting. To use them,
diff --git a/man/details_linear_reg_spark.Rd b/man/details_linear_reg_spark.Rd
index 62821996d..fe0b3375b 100644
--- a/man/details_linear_reg_spark.Rd
+++ b/man/details_linear_reg_spark.Rd
@@ -77,6 +77,20 @@ Note that, for spark engines, the \code{case_weight} argument value should be
a character string to specify the column with the numeric case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "spark") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 1 x 2
+## mode type
+##
+## 1 regression numeric
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
For models created using the \code{"spark"} engine, there are several things
diff --git a/man/details_linear_reg_stan.Rd b/man/details_linear_reg_stan.Rd
index 787cefed2..dd0250ce2 100644
--- a/man/details_linear_reg_stan.Rd
+++ b/man/details_linear_reg_stan.Rd
@@ -83,6 +83,23 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "stan") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 4 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression conf_int
+## 3 regression pred_int
+## 4 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{Examples}{
The “Fitting and Predicting with parsnip” article contains
diff --git a/man/details_linear_reg_stan_glmer.Rd b/man/details_linear_reg_stan_glmer.Rd
index 0c15a8b27..8c22fe291 100644
--- a/man/details_linear_reg_stan_glmer.Rd
+++ b/man/details_linear_reg_stan_glmer.Rd
@@ -144,6 +144,22 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("linear_reg_predict") |>
+ dplyr::filter(engine == "stan_glmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression pred_int
+## 3 regression raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item McElreath, R. 2020 \emph{Statistical Rethinking}. CRC Press.
diff --git a/man/details_logistic_reg_LiblineaR.Rd b/man/details_logistic_reg_LiblineaR.Rd
index fa2bcc245..780ea01ed 100644
--- a/man/details_logistic_reg_LiblineaR.Rd
+++ b/man/details_logistic_reg_LiblineaR.Rd
@@ -61,6 +61,22 @@ center and scale each so that each predictor has mean zero and a
variance of one.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "LiblineaR") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Sparse Data}{
This model can utilize sparse data during model fitting and prediction.
diff --git a/man/details_logistic_reg_brulee.Rd b/man/details_logistic_reg_brulee.Rd
index 4d0f03355..130bc8bd1 100644
--- a/man/details_logistic_reg_brulee.Rd
+++ b/man/details_logistic_reg_brulee.Rd
@@ -76,6 +76,21 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "brulee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_logistic_reg_gee.Rd b/man/details_logistic_reg_gee.Rd
index 2f31fd93d..c60af8443 100644
--- a/man/details_logistic_reg_gee.Rd
+++ b/man/details_logistic_reg_gee.Rd
@@ -105,6 +105,22 @@ that \code{predict()} can be used.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "gee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Liang, K.Y. and Zeger, S.L. (1986) Longitudinal data analysis using
diff --git a/man/details_logistic_reg_glm.Rd b/man/details_logistic_reg_glm.Rd
index e67400c26..fdf38cc23 100644
--- a/man/details_logistic_reg_glm.Rd
+++ b/man/details_logistic_reg_glm.Rd
@@ -81,6 +81,23 @@ give the number of trials when the response is the proportion of
successes: they would rarely be used for a Poisson GLM.”
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "glm") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 4 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+## 4 classification conf_int
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_logistic_reg_glmer.Rd b/man/details_logistic_reg_glmer.Rd
index 276269483..58ead423e 100644
--- a/man/details_logistic_reg_glmer.Rd
+++ b/man/details_logistic_reg_glmer.Rd
@@ -118,6 +118,21 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "glmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item J Pinheiro, and D Bates. 2000. \emph{Mixed-effects models in S and S-PLUS}.
diff --git a/man/details_logistic_reg_glmnet.Rd b/man/details_logistic_reg_glmnet.Rd
index 6f70072d5..59ce5f8a7 100644
--- a/man/details_logistic_reg_glmnet.Rd
+++ b/man/details_logistic_reg_glmnet.Rd
@@ -73,6 +73,22 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "glmnet") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Sparse Data}{
This model can utilize sparse data during model fitting and prediction.
diff --git a/man/details_logistic_reg_h2o.Rd b/man/details_logistic_reg_h2o.Rd
index e88d8d03d..8ed5b69ac 100644
--- a/man/details_logistic_reg_h2o.Rd
+++ b/man/details_logistic_reg_h2o.Rd
@@ -90,6 +90,21 @@ By default, \code{\link[h2o:h2o.glm]{h2o::h2o.glm()}} uses the argument
\code{standardize = TRUE} to center and scale all numeric columns.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Initializing h2o}{
To use the h2o engine with tidymodels, please run \code{h2o::h2o.init()}
diff --git a/man/details_logistic_reg_keras.Rd b/man/details_logistic_reg_keras.Rd
index 28ca17300..63caccbed 100644
--- a/man/details_logistic_reg_keras.Rd
+++ b/man/details_logistic_reg_keras.Rd
@@ -62,6 +62,21 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "keras") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
Models fitted with this engine may require native serialization methods
diff --git a/man/details_logistic_reg_spark.Rd b/man/details_logistic_reg_spark.Rd
index 886310ab3..8be5e19b9 100644
--- a/man/details_logistic_reg_spark.Rd
+++ b/man/details_logistic_reg_spark.Rd
@@ -79,6 +79,21 @@ Note that, for spark engines, the \code{case_weight} argument value should be
a character string to specify the column with the numeric case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "spark") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
For models created using the \code{"spark"} engine, there are several things
diff --git a/man/details_logistic_reg_stan.Rd b/man/details_logistic_reg_stan.Rd
index ed62457e8..66e8af922 100644
--- a/man/details_logistic_reg_stan.Rd
+++ b/man/details_logistic_reg_stan.Rd
@@ -84,6 +84,24 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "stan") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+## 4 classification conf_int
+## 5 classification pred_int
+}\if{html}{\out{
}}
+}
+
\subsection{Examples}{
The “Fitting and Predicting with parsnip” article contains
diff --git a/man/details_logistic_reg_stan_glmer.Rd b/man/details_logistic_reg_stan_glmer.Rd
index 71e16b07b..15d23c3a5 100644
--- a/man/details_logistic_reg_stan_glmer.Rd
+++ b/man/details_logistic_reg_stan_glmer.Rd
@@ -143,6 +143,24 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("logistic_reg_predict") |>
+ dplyr::filter(engine == "stan_glmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification conf_int
+## 4 classification pred_int
+## 5 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item McElreath, R. 2020 \emph{Statistical Rethinking}. CRC Press.
diff --git a/man/details_mars_earth.Rd b/man/details_mars_earth.Rd
index 75e7c7ee3..1d621761b 100644
--- a/man/details_mars_earth.Rd
+++ b/man/details_mars_earth.Rd
@@ -97,6 +97,23 @@ Note that the \code{earth} package documentation has: “In the current
implementation, \emph{building models with weights can be slow}.”
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("mars_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+## 5 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_mlp_brulee.Rd b/man/details_mlp_brulee.Rd
index 829025152..e550dd16b 100644
--- a/man/details_mlp_brulee.Rd
+++ b/man/details_mlp_brulee.Rd
@@ -132,6 +132,22 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("mlp_predict") |>
+ dplyr::filter(engine == "brulee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_mlp_brulee_two_layer.Rd b/man/details_mlp_brulee_two_layer.Rd
index 89f943714..ffd39d918 100644
--- a/man/details_mlp_brulee_two_layer.Rd
+++ b/man/details_mlp_brulee_two_layer.Rd
@@ -148,6 +148,22 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("mlp_predict") |>
+ dplyr::filter(engine == "brulee_two_layer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 classification class
+## 3 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_mlp_h2o.Rd b/man/details_mlp_h2o.Rd
index 9b82c34f1..105e2c62f 100644
--- a/man/details_mlp_h2o.Rd
+++ b/man/details_mlp_h2o.Rd
@@ -139,6 +139,23 @@ the argument \code{standardize = TRUE} to center and scale all numeric
columns.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("mlp_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 4 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Initializing h2o}{
To use the h2o engine with tidymodels, please run \code{h2o::h2o.init()}
diff --git a/man/details_mlp_keras.Rd b/man/details_mlp_keras.Rd
index 4a8fc0070..fa29cc071 100644
--- a/man/details_mlp_keras.Rd
+++ b/man/details_mlp_keras.Rd
@@ -102,6 +102,24 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("mlp_predict") |>
+ dplyr::filter(engine == "keras") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+## 5 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
Models fitted with this engine may require native serialization methods
diff --git a/man/details_mlp_nnet.Rd b/man/details_mlp_nnet.Rd
index ab4f51cab..0580a8298 100644
--- a/man/details_mlp_nnet.Rd
+++ b/man/details_mlp_nnet.Rd
@@ -97,6 +97,24 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("mlp_predict") |>
+ dplyr::filter(engine == "nnet") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 regression numeric
+## 2 regression raw
+## 3 classification class
+## 4 classification prob
+## 5 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_multinom_reg_brulee.Rd b/man/details_multinom_reg_brulee.Rd
index ad46d4a92..24c3597b8 100644
--- a/man/details_multinom_reg_brulee.Rd
+++ b/man/details_multinom_reg_brulee.Rd
@@ -75,6 +75,21 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("multinom_reg_predict") |>
+ dplyr::filter(engine == "brulee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}. Springer.
diff --git a/man/details_multinom_reg_glmnet.Rd b/man/details_multinom_reg_glmnet.Rd
index 4ff5db0c9..61e2ddecf 100644
--- a/man/details_multinom_reg_glmnet.Rd
+++ b/man/details_multinom_reg_glmnet.Rd
@@ -79,6 +79,22 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("multinom_reg_predict") |>
+ dplyr::filter(engine == "glmnet") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Sparse Data}{
This model can utilize sparse data during model fitting and prediction.
diff --git a/man/details_multinom_reg_h2o.Rd b/man/details_multinom_reg_h2o.Rd
index 6d3a434a8..43557fdc7 100644
--- a/man/details_multinom_reg_h2o.Rd
+++ b/man/details_multinom_reg_h2o.Rd
@@ -72,6 +72,21 @@ By default, \code{\link[h2o:h2o.glm]{h2o::h2o.glm()}} uses the argument
\code{standardize = TRUE} to center and scale the data.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("multinom_reg_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Initializing h2o}{
To use the h2o engine with tidymodels, please run \code{h2o::h2o.init()}
diff --git a/man/details_multinom_reg_keras.Rd b/man/details_multinom_reg_keras.Rd
index 694b705d9..daa5f7bf1 100644
--- a/man/details_multinom_reg_keras.Rd
+++ b/man/details_multinom_reg_keras.Rd
@@ -61,6 +61,21 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("multinom_reg_predict") |>
+ dplyr::filter(engine == "keras") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
Models fitted with this engine may require native serialization methods
diff --git a/man/details_multinom_reg_nnet.Rd b/man/details_multinom_reg_nnet.Rd
index 9da58f82b..109bdb5a1 100644
--- a/man/details_multinom_reg_nnet.Rd
+++ b/man/details_multinom_reg_nnet.Rd
@@ -52,6 +52,22 @@ center and scale each so that each predictor has mean zero and a
variance of one.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("multinom_reg_predict") |>
+ dplyr::filter(engine == "nnet") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+## 3 classification raw
+}\if{html}{\out{
}}
+}
+
\subsection{Examples}{
The “Fitting and Predicting with parsnip” article contains
diff --git a/man/details_multinom_reg_spark.Rd b/man/details_multinom_reg_spark.Rd
index 82804f070..b788dacc9 100644
--- a/man/details_multinom_reg_spark.Rd
+++ b/man/details_multinom_reg_spark.Rd
@@ -78,6 +78,21 @@ Note that, for spark engines, the \code{case_weight} argument value should be
a character string to specify the column with the numeric case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{
}}\preformatted{parsnip:::get_from_env("multinom_reg_predict") |>
+ dplyr::filter(engine == "spark") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{
}}\preformatted{## # A tibble: 2 x 2
+## mode type
+##
+## 1 classification class
+## 2 classification prob
+}\if{html}{\out{
}}
+}
+
\subsection{Other details}{
For models created using the \code{"spark"} engine, there are several things
diff --git a/man/details_naive_Bayes_h2o.Rd b/man/details_naive_Bayes_h2o.Rd
index a7e6fb18a..d1a5ff565 100644
--- a/man/details_naive_Bayes_h2o.Rd
+++ b/man/details_naive_Bayes_h2o.Rd
@@ -57,6 +57,21 @@ The \strong{agua} extension package is required to fit this model.
}\if{html}{\out{
}}
}
+\subsection{Prediction types}{
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("naive_Bayes_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("naive_Bayes_predict") |>
+ dplyr::filter(engine == "klaR") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("naive_Bayes_predict") |>
+ dplyr::filter(engine == "naivebayes") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("nearest_neighbor_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("pls_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "gee") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "glm") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "glmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "glmnet") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "hurdle") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "stan") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "stan_glmer") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("poisson_reg_predict") |>
+ dplyr::filter(engine == "zeroinfl") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("proportional_hazards_predict") |>
+ dplyr::filter(engine == "survival") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{## # A tibble: 3 x 2
+## mode type
+##
+## 1 censored regression time
+## 2 censored regression survival
+## 3 censored regression linear_pred
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Andersen P, Gill R. 1982. Cox’s regression model for counting
diff --git a/man/details_rand_forest_aorsf.Rd b/man/details_rand_forest_aorsf.Rd
index e55532a45..6ccb4d7d6 100644
--- a/man/details_rand_forest_aorsf.Rd
+++ b/man/details_rand_forest_aorsf.Rd
@@ -115,6 +115,26 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rand_forest_predict") |>
+ dplyr::filter(engine == "aorsf") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rand_forest_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rand_forest_predict") |>
+ dplyr::filter(engine == "partykit") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rand_forest_predict") |>
+ dplyr::filter(engine == "randomForest") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rand_forest_predict") |>
+ dplyr::filter(engine == "ranger") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rand_forest_predict") |>
+ dplyr::filter(engine == "spark") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rule_fit_predict") |>
+ dplyr::filter(engine == "h2o") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("rule_fit_predict") |>
+ dplyr::filter(engine == "xrf") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("survival_reg_predict") |>
+ dplyr::filter(engine == "flexsurv") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 censored regression time
+## 2 censored regression quantile
+## 3 censored regression hazard
+## 4 censored regression survival
+## 5 censored regression linear_pred
+}\if{html}{\out{
}}
+}
+
\subsection{References}{
\itemize{
\item Jackson, C. 2016. \code{flexsurv}: A Platform for Parametric Survival
diff --git a/man/details_survival_reg_flexsurvspline.Rd b/man/details_survival_reg_flexsurvspline.Rd
index a58ebe7f2..c3f7da445 100644
--- a/man/details_survival_reg_flexsurvspline.Rd
+++ b/man/details_survival_reg_flexsurvspline.Rd
@@ -62,6 +62,24 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("survival_reg_predict") |>
+ dplyr::filter(engine == "flexsurvspline") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 censored regression time
+## 2 censored regression quantile
+## 3 censored regression hazard
+## 4 censored regression survival
+## 5 censored regression linear_pred
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_survival_reg_survival.Rd b/man/details_survival_reg_survival.Rd
index e938407de..b6c25b2c9 100644
--- a/man/details_survival_reg_survival.Rd
+++ b/man/details_survival_reg_survival.Rd
@@ -98,6 +98,24 @@ The \code{fit()} and \code{fit_xy()} arguments have arguments called
\code{case_weights} that expect vectors of case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("survival_reg_predict") |>
+ dplyr::filter(engine == "survival") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{## # A tibble: 5 x 2
+## mode type
+##
+## 1 censored regression time
+## 2 censored regression quantile
+## 3 censored regression hazard
+## 4 censored regression survival
+## 5 censored regression linear_pred
+}\if{html}{\out{
}}
+}
+
\subsection{Saving fitted model objects}{
This model object contains data that are not required to make
diff --git a/man/details_svm_linear_LiblineaR.Rd b/man/details_svm_linear_LiblineaR.Rd
index 59fc6ff81..ac765a9ed 100644
--- a/man/details_svm_linear_LiblineaR.Rd
+++ b/man/details_svm_linear_LiblineaR.Rd
@@ -99,6 +99,23 @@ variance of one.
The underlying model implementation does not allow for case weights.
}
+\subsection{Prediction types}{
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("svm_linear_predict") |>
+ dplyr::filter(engine == "LiblineaR") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("svm_linear_predict") |>
+ dplyr::filter(engine == "kernlab") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("svm_poly_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("svm_rbf_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{}}\preformatted{parsnip:::get_from_env("null_model_predict") |>
+ dplyr::select(mode, type)
+}\if{html}{\out{
}}
+
+\if{html}{\out{