diff --git a/DESCRIPTION b/DESCRIPTION index a745e819f..74f62fa96 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: parsnip Title: A Common API to Modeling and Analysis Functions -Version: 1.3.3.9000 +Version: 1.3.3.9001 Authors@R: c( person("Max", "Kuhn", , "max@posit.co", role = c("aut", "cre")), person("Davis", "Vaughan", , "davis@posit.co", role = "aut"), diff --git a/NEWS.md b/NEWS.md index 234821fc7..b77bd424e 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,5 +1,7 @@ # parsnip (development version) +* Fixes issue with running predictions for Decision Trees in Spark (#1309) + * Updates to some boosting tuning parameter information: (#1306) - lightgbm and catboost have smaller default ranges for the learning rate: -3 to -1 / 2 in log10 units. - lightgbm, xgboost, catboost, and C5.0 have smaller default ranges for the sampling proportion: 0.5 to 1.0. diff --git a/R/decision_tree_data.R b/R/decision_tree_data.R index 533a714c8..d53263f2c 100644 --- a/R/decision_tree_data.R +++ b/R/decision_tree_data.R @@ -325,7 +325,7 @@ set_pred( pre = NULL, post = format_spark_num, func = c(pkg = "sparklyr", fun = "ml_predict"), - args = list(object = quote(object$fit), dataset = quote(new_data)) + args = list(x = quote(object$fit), dataset = quote(new_data)) ) ) @@ -338,7 +338,7 @@ set_pred( pre = NULL, post = format_spark_class, func = c(pkg = "sparklyr", fun = "ml_predict"), - args = list(object = quote(object$fit), dataset = quote(new_data)) + args = list(x = quote(object$fit), dataset = quote(new_data)) ) ) @@ -351,6 +351,6 @@ set_pred( pre = NULL, post = format_spark_probs, func = c(pkg = "sparklyr", fun = "ml_predict"), - args = list(object = quote(object$fit), dataset = quote(new_data)) + args = list(x = quote(object$fit), dataset = quote(new_data)) ) )