|
| 1 | +# Enhanced `save_pretrained` Arguments |
| 2 | + |
| 3 | +The `llmcompressor` library extends Hugging Face's `save_pretrained` method with additional arguments to support model compression functionality. This document explains these extra arguments and how to use them effectively. |
| 4 | + |
| 5 | +## How It Works |
| 6 | + |
| 7 | +When you import `llmcompressor`, it automatically wraps the model's original `save_pretrained` method with an enhanced version that supports compression. This happens in two ways: |
| 8 | + |
| 9 | +1. **Direct modification**: When you call `modify_save_pretrained(model)` directly |
| 10 | +2. **Automatic wrapping**: When you call `oneshot(...)`, which wraps `save_pretrained` under the hood |
| 11 | + |
| 12 | +This means that after applying compression with `oneshot`, your model's `save_pretrained` method is already enhanced with compression capabilities, and you can use the additional arguments described below. |
| 13 | + |
| 14 | +## Additional Arguments |
| 15 | + |
| 16 | +When saving your compressed models, you can use the following extra arguments with the `save_pretrained` method: |
| 17 | + |
| 18 | +| Parameter | Type | Default | Description | |
| 19 | +|-----------|------|---------|-------------| |
| 20 | +| `sparsity_config` | `Optional[SparsityCompressionConfig]` | `None` | Optional configuration for sparsity compression. If None and `skip_sparsity_compression_stats` is False, configuration will be automatically inferred from the model. | |
| 21 | +| `quantization_format` | `Optional[str]` | `None` | Optional format string for quantization. If not provided, it will be inferred from the model. | |
| 22 | +| `save_compressed` | `bool` | `True` | Controls whether to save the model in a compressed format. Set to `False` to save in the original dense format. | |
| 23 | +| `skip_sparsity_compression_stats` | `bool` | `True` | Controls whether to skip calculating sparsity statistics (e.g., global sparsity and structure) when saving the model. Set to `False` to include these statistics. | |
| 24 | +| `disable_sparse_compression` | `bool` | `False` | When set to `True`, skips any sparse compression during save, even if the model has been previously compressed. | |
| 25 | + |
| 26 | +## Examples |
| 27 | + |
| 28 | +### Applying Compression with oneshot |
| 29 | + |
| 30 | +The simplest approach is to use `oneshot`, which handles both compression and wrapping `save_pretrained`: |
| 31 | + |
| 32 | +```python |
| 33 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
| 34 | +from llmcompressor import oneshot |
| 35 | +from llmcompressor.modifiers.quantization import GPTQModifier |
| 36 | + |
| 37 | +# Load model |
| 38 | +model = AutoModelForCausalLM.from_pretrained("your-model") |
| 39 | +tokenizer = AutoTokenizer.from_pretrained("your-model") |
| 40 | + |
| 41 | +# Apply compression - this also wraps save_pretrained |
| 42 | +oneshot( |
| 43 | + model=model, |
| 44 | + recipe=[GPTQModifier(targets="Linear", scheme="W8A8", ignore=["lm_head"])], |
| 45 | + # Other oneshot parameters... |
| 46 | +) |
| 47 | + |
| 48 | +# Now you can use the enhanced save_pretrained |
| 49 | +SAVE_DIR = "your-model-W8A8-compressed" |
| 50 | +model.save_pretrained( |
| 51 | + SAVE_DIR, |
| 52 | + save_compressed=True # Use the enhanced functionality |
| 53 | +) |
| 54 | +tokenizer.save_pretrained(SAVE_DIR) |
| 55 | +``` |
| 56 | + |
| 57 | +### Manual Approach (Without oneshot) |
| 58 | + |
| 59 | +If you need more control, you can wrap `save_pretrained` manually: |
| 60 | + |
| 61 | +```python |
| 62 | +from transformers import AutoModelForCausalLM |
| 63 | +from llmcompressor.transformers.sparsification import modify_save_pretrained |
| 64 | + |
| 65 | +# Load model |
| 66 | +model = AutoModelForCausalLM.from_pretrained("your-model") |
| 67 | + |
| 68 | +# Manually wrap save_pretrained |
| 69 | +modify_save_pretrained(model) |
| 70 | + |
| 71 | +# Now you can use the enhanced save_pretrained |
| 72 | +model.save_pretrained( |
| 73 | + "your-model-path", |
| 74 | + save_compressed=True, |
| 75 | + skip_sparsity_compression_stats=False # to infer sparsity config |
| 76 | +) |
| 77 | +``` |
| 78 | + |
| 79 | +### Saving with Custom Sparsity Configuration |
| 80 | + |
| 81 | +```python |
| 82 | +from compressed_tensors.sparsification import SparsityCompressionConfig |
| 83 | + |
| 84 | +# Create custom sparsity config |
| 85 | +custom_config = SparsityCompressionConfig( |
| 86 | + format="2:4", |
| 87 | + block_size=16 |
| 88 | +) |
| 89 | + |
| 90 | +# Save with custom config |
| 91 | +model.save_pretrained( |
| 92 | + "your-model-custom-sparse", |
| 93 | + sparsity_config=custom_config, |
| 94 | +) |
| 95 | +``` |
| 96 | + |
| 97 | +## Notes |
| 98 | + |
| 99 | +- When loading compressed models with `from_pretrained`, the compression format is automatically detected. |
| 100 | +- To use compressed models with vLLM, simply load them as you would any model: |
| 101 | + ```python |
| 102 | + from vllm import LLM |
| 103 | + model = LLM("./your-model-compressed") |
| 104 | + ``` |
| 105 | +- Compression configurations are saved in the model's config file and are automatically applied when loading. |
| 106 | + |
| 107 | +For more information about compression algorithms and formats, please refer to the documentation and examples in the llmcompressor repository. |
0 commit comments