diff --git a/examples/quantization_w4a4_fp4/llama3_mxfp4.py b/examples/quantization_w4a4_fp4/llama3_mxfp4.py new file mode 100644 index 000000000..becc71c95 --- /dev/null +++ b/examples/quantization_w4a4_fp4/llama3_mxfp4.py @@ -0,0 +1,35 @@ +from transformers import AutoModelForCausalLM, AutoTokenizer + +from llmcompressor import oneshot +from llmcompressor.modifiers.quantization import QuantizationModifier +from llmcompressor.utils import dispatch_for_generation + +MODEL_ID = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" + +# Load model. +model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto") +tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) + +# Configure the quantization algorithm and scheme. +# In this case, we: +# * quantize the weights to fp4 with per group 16 via ptq +recipe = QuantizationModifier(targets="Linear", scheme="MXFP4", ignore=["lm_head"]) + +# Apply quantization. +oneshot(model=model, recipe=recipe) + +print("\n\n") +print("========== SAMPLE GENERATION ==============") +dispatch_for_generation(model) +input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to( + model.device +) +output = model.generate(input_ids, max_new_tokens=100) +print(tokenizer.decode(output[0])) +print("==========================================\n\n") + + +# Save to disk in compressed-tensors format. +SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-MXFP4" +model.save_pretrained(SAVE_DIR, save_compressed=True) +tokenizer.save_pretrained(SAVE_DIR)