You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
reacted with thumbs up emoji reacted with thumbs down emoji reacted with laugh emoji reacted with hooray emoji reacted with confused emoji reacted with heart emoji reacted with rocket emoji reacted with eyes emoji
Uh oh!
There was an error while loading. Please reload this page.
-
四边形$APBQ$ 内接于圆 $ω$ , 满足 $∠P=∠Q=90°$ 且 $AP=AQ\lt BP$ .设点 $X$ 为线段 $PQ$ 上的一个动点,直线 $AC$ 与 $ω$ 的另一个交点为 $S$ (不同于点 $A$ ),点 $T$ 在 $\overset{\Huge\frown}{AQB}$ 上且 $XT\perp AX$ .设点 $M$ 为线段 $ST$ 的中点,证明:当点 $X$ 在线段 $PQ$ 上移动时,点 $M$ 在一个圆周上移动.
Beta Was this translation helpful? Give feedback.
All reactions