|
207 | 207 | ), |
208 | 208 |
|
209 | 209 | 'conv_2d_no_contiguous': dict( |
210 | | - name=['conv2d'], |
211 | | - atol=1e-1, |
212 | | - rtol=1e-2, |
| 210 | + name=["conv2d"], |
| 211 | + tensor_para=dict( |
| 212 | + args=[ |
| 213 | + { |
| 214 | + "ins": ["input"], |
| 215 | + "dtype": [Skip(np.float32), Skip(np.float16), Skip(np.float64)], |
| 216 | + }, |
| 217 | + ] |
| 218 | + ), |
| 219 | + ), |
| 220 | + |
| 221 | + 'relu_no_contiguous': dict( |
| 222 | + name=["relu"], |
| 223 | + is_inplace=True, |
| 224 | + tensor_para=dict( |
| 225 | + args=[ |
| 226 | + { |
| 227 | + "ins": ['input'], |
| 228 | + "dtype": [Skip(np.float32), Skip(np.float64)], |
| 229 | + }, |
| 230 | + ], |
| 231 | + ), |
213 | 232 | ), |
214 | 233 |
|
215 | 234 | 'hardswish': dict( |
|
1312 | 1331 | ), |
1313 | 1332 | ), |
1314 | 1333 |
|
1315 | | - 'remainder_self_scalar': dict( |
1316 | | - name=['remainder'], |
1317 | | - tensor_para=dict( |
1318 | | - args=[ |
1319 | | - { |
1320 | | - "ins": ['other'], |
1321 | | - "dtype": [Skip(np.float32),Skip(np.float64),Skip(np.float16),Skip(np.int16),Skip(np.int32),Skip(np.int64),Skip(np.int8),Skip(np.uint8),Skip(np.bool_),], |
1322 | | - }, |
1323 | | - ] |
1324 | | - ), |
1325 | | - ), |
1326 | | - |
1327 | | - 'remainder_self_bool': dict( |
1328 | | - name=['remainder'], |
1329 | | - tensor_para=dict( |
1330 | | - args=[ |
1331 | | - { |
1332 | | - "ins": ['other'], |
1333 | | - "dtype": [Skip(np.float32),Skip(np.float64),Skip(np.float16),Skip(np.int16),Skip(np.int32),Skip(np.int64),Skip(np.int8),Skip(np.uint8),Skip(np.bool_),], |
1334 | | - }, |
1335 | | - ] |
1336 | | - ), |
1337 | | - ), |
1338 | | - |
1339 | | - 'remainder_tensor': dict( |
1340 | | - name=['remainder'], |
1341 | | - tensor_para=dict( |
1342 | | - args=[ |
1343 | | - { |
1344 | | - "ins": ['input'], |
1345 | | - "dtype": [Skip(np.float32),Skip(np.float64),Skip(np.float16),Skip(np.int16),Skip(np.int32),Skip(np.int64),Skip(np.int8),Skip(np.uint8),Skip(np.bool_),], |
1346 | | - }, |
1347 | | - ] |
1348 | | - ), |
1349 | | - ), |
1350 | | - |
1351 | | - 'remainder_tensor_zero': dict( |
1352 | | - name=['remainder'], |
1353 | | - tensor_para=dict( |
1354 | | - args=[ |
1355 | | - { |
1356 | | - "ins": ['input'], |
1357 | | - "dtype": [Skip(np.int16),Skip(np.uint8),Skip(np.int8),], |
1358 | | - }, |
1359 | | - ] |
1360 | | - ), |
1361 | | - ), |
1362 | | - |
1363 | | - 'remainder_other_scalar': dict( |
1364 | | - name=['remainder'], |
1365 | | - tensor_para=dict( |
1366 | | - args=[ |
1367 | | - { |
1368 | | - "ins": ['input'], |
1369 | | - "dtype": [Skip(np.int16),Skip(np.int32),Skip(np.int64),Skip(np.uint8),Skip(np.int8),Skip(np.bool_),Skip(np.float16),Skip(np.float32),Skip(np.float64)], |
1370 | | - }, |
1371 | | - ] |
1372 | | - ), |
1373 | | - ), |
1374 | | - |
1375 | | - 'remainder_other_scalar_bool': dict( |
1376 | | - name=['remainder'], |
1377 | | - tensor_para=dict( |
1378 | | - args=[ |
1379 | | - { |
1380 | | - "ins": ['input'], |
1381 | | - "dtype": [Skip(np.float32),Skip(np.float64),Skip(np.float16),Skip(np.int16),Skip(np.int32),Skip(np.int64),Skip(np.uint8),Skip(np.int8),], |
1382 | | - }, |
1383 | | - ] |
1384 | | - ), |
1385 | | - ), |
1386 | | - |
1387 | 1334 | 'gather': dict( |
1388 | 1335 | name=['gather'], |
1389 | 1336 | tensor_para=dict( |
|
1596 | 1543 | { |
1597 | 1544 | "ins": ["input"], |
1598 | 1545 | "shape": [Skip((12, 0, 9)), Skip((8,))], |
1599 | | - "dtype": [Skip(np.complex128), Skip(np.complex64)], |
| 1546 | + "dtype": [Skip(np.complex128), Skip(np.complex64), Skip(np.float64)], |
1600 | 1547 | }, |
1601 | 1548 | { |
1602 | 1549 | "ins": ["other"], |
1603 | | - "dtype": [Skip(np.complex128)] |
| 1550 | + "dtype": [Skip(np.complex128), Skip(np.float64)] |
1604 | 1551 | }, |
1605 | 1552 | ] |
1606 | 1553 | ) |
|
1614 | 1561 | { |
1615 | 1562 | "ins": ["input"], |
1616 | 1563 | "shape": [Skip((12, 1, 12)),], |
1617 | | - "dtype": [Skip(np.complex128), Skip(np.complex64)], |
| 1564 | + "dtype": [Skip(np.complex128), Skip(np.complex64), Skip(np.float64)], |
1618 | 1565 | }, |
1619 | 1566 | { |
1620 | 1567 | "ins": ["other"], |
|
1632 | 1579 | args=[ |
1633 | 1580 | { |
1634 | 1581 | "ins": ["input"], |
1635 | | - "shape": [Skip((6, 5, 384))], |
1636 | | - "dtype": [Skip(np.complex128), Skip(np.complex64)], |
| 1582 | + "shape": [Skip((6, 5, 384)), Skip((2, 4, 38, 45))], |
| 1583 | + "dtype": [Skip(np.complex128), Skip(np.complex64), Skip(np.float64)], |
1637 | 1584 | }, |
1638 | 1585 | { |
1639 | 1586 | "ins": ["other"], |
1640 | | - "dtype": [Skip(np.complex128)], |
| 1587 | + "dtype": [Skip(np.complex128), Skip(np.float64)], |
1641 | 1588 | }, |
1642 | 1589 | ] |
1643 | 1590 | ) |
|
1650 | 1597 | args=[ |
1651 | 1598 | { |
1652 | 1599 | "ins": ["input"], |
1653 | | - "shape": [Skip((192, 147, 2)), Skip((2, 12, 38, 45, 3))], |
| 1600 | + "shape": [Skip((192, 147)), Skip((192, 147, 2)), Skip((2, 12, 38, 45, 3))], |
| 1601 | + "dtype": [Skip(np.complex128), Skip(np.complex64), Skip(np.float64)], |
1654 | 1602 | }, |
1655 | 1603 | { |
1656 | 1604 | "ins": ["other"], |
1657 | | - "dtype": [Skip(np.complex64)], |
| 1605 | + "dtype": [Skip(np.complex64), Skip(np.float64)], |
1658 | 1606 | }, |
1659 | 1607 | ] |
1660 | 1608 | ) |
|
0 commit comments