A comprehensive entity resolution and security monitoring system that unifies campus data sources to provide proactive threat detection and explainable AI predictions.
security_monitoring_system/ -> Core Application Files -> security_dashboard.py ( # Main Streamlit UI)
-> production_predictor.py (# ML prediction backend) -> pipeline.py (# ML training pipeline) -> EntityResolver.py ( # Entity resolution pipeline)
Machine Learning -> trained_model.joblib # trained ML model -> predictive_features.json # Entity features for ML ->predictive_features_code_file.py # Feature generation code
Entity Resolution -> Entity_resolution_map.json # Entity mapping data . Entity_resolution_map_code_file.py # Resolution logic
Raw Data Sources . campus card_swipes.csv # Card swipe access logs .wifi_associations_logs.csv # WiFi connection data . cctv_frames.csv # CCTV face recognition data . face_embeddings.csv # Facial feature vectors . library_checkouts.csv #lab record records . lab_bookings.csv # Laboratory reservations . free_text_notes.csv # Helpdesk tickets & RSVPs .student or staff profiles.csv # Entity master data
├Documentation ├── README.md # This file └── report.pdf # Technical report
RAW DATA SOURCES->
DATA INGESTION LAYER
• CSV File Parsing
• Data Validation
• Timestamp Normalization->
ENTITY RESOLUTION ENGINE • Direct Matching (student_id, card_id, face_id) • Fuzzy Matching (Name, Email variants) • Cross-Source Linking (Temporal, Spatial)
MULTI-MODAL FUSION LAYER • Temporal Alignment (5-min windows) • Confidence-weighted Data Fusion • Activity Timeline Generation
MACHINE LEARNING PIPELINE
• Feature Engineering (Temporal, Spatial, Behavioral, Sequential)
• Model Training (XGBoost, Random Forest, Ensemble)
• Prediction & Evidence Generation
SECURITY DASHBOARD • Real-time Entity Monitoring • Predictive Location Insights • 12-hour Inactivity Alerts