1- Implementation of PCA from scratch. 
   a) implementation of covariance matrix. 
   b) implementation of eigenvalues and eigenvectors using power iteration method.
2- Preprocessing the mnist dataset making it binary image (only zeros and ones) to apply the hamming network later on it.
3- Tring different number of components in PCA till gets best result. 
4- Cluster data using k-means (you can replace it with any clustering technique).
5- Apply Hamming on unseen data point with PCA and without PCA.
- 
                Notifications
    
You must be signed in to change notification settings  - Fork 0
 
Aalaa4444/Hamming_Network
Folders and files
| Name | Name | Last commit message  | Last commit date  | |
|---|---|---|---|---|
Repository files navigation
About
Hamming Network implementation using PCA implementation from scratch
Topics
      
  pca
      
  insertion-sort
      
  mnist-dataset
      
  eigenvectors
      
  unsupervised-learning
      
  kmeans-clustering
      
  eigenvalues
      
  k-means-implementation-in-python
      
  k-means-clustering
      
  kmeans-clustering-algorithm
      
  variance-analysis
      
  hamming-network
      
  pca-implementation
      
  power-iteration
      
  covariance-matrix-implementation
      
  eigenvalues-implementation
      
  eigenvectors-implementation
      
  mnist-preprocessing
  
    Resources
Stars
Watchers
Forks
Releases
No releases published
              Packages 0
        No packages published