Skip to content

EasonAI-5589/MME

Repository files navigation

Clone the Required Repositories for MME Evaluation Benchmark

To streamline the use of the MME Benchmark, we have consolidated all the necessary repositories and configured them for one-button deployment. Follow the steps below to get started. We take LVLM LLaVA as an example.

Step 1: Directory Setup

Begin by creating the required directory structure inside your LLaVA workspace:

mkdir -p LLaVA/playground/data/eval/MME

This ensures all evaluation data is well-organized. We strongly recommend placing the MME folder inside eval for better clarity and separation.

Step 2: Clone the MME Evaluation Benchmark

Now, clone the benchmark repository:

git clone https://github.com/DAILtech/Evaluation-benchmark-MME/

This repository contains everything needed for running the MME Benchmark in one go.

Step 3: Run evaluation command

(your should in LLaVA folder)

#!/bin/bash
# cd LLaVA

python -m llava.eval.model_vqa_loader \
    --model-path /root/autodl-tmp/LLaVA/llava-v1.5-7b \
    --question-file ./playground/data/eval/MME/llava_mme_test.jsonl \
    --image-folder ./playground/data/eval/MME/MME_Benchmark_release_version \
    --answers-file ./playground/data/eval/MME/answers/llava-v1.5-7b.jsonl \
    --temperature 0 \
    --conv-mode vicuna_v1 \

cd ./playground/data/eval/MME

python convert_answer_to_mme.py --experiment llava-v1.5-7b

cd eval_tool

python calculation.py --results_dir answers/llava-v1.5-7b

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages