-
Notifications
You must be signed in to change notification settings - Fork 20
Creation of arxiv-2023 folder #481
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
JackLiuyiyao
wants to merge
8
commits into
Graph-Learning-Benchmarks:main
Choose a base branch
from
JackLiuyiyao:arxiv
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
Show all changes
8 commits
Select commit
Hold shift + click to select a range
d7571df
filling arxiv-2023 foler
JackLiuyiyao 5231648
task bug fixed
JackLiuyiyao e740be3
attempted to fix bug
JackLiuyiyao 5104087
added label
JackLiuyiyao b717134
corrected feature and label
JackLiuyiyao 9185ddc
Reverted
JackLiuyiyao f5ec45c
updated json files
JackLiuyiyao c862e9e
deleted contents in LICENSE
JackLiuyiyao File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
Empty file.
Submodule LLM
added at
6a25ec
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
# ARXIV-2023 | ||
|
||
## Dataset Description | ||
|
||
A text attributed graph dataset where each node is associated with multiple text attributes. | ||
It is collected to be compared with ogbn-arxiv. Both datasets represent directed citation networks where each node corresponds to a paper published on arXiv and each edge indicates one paper citing another. | ||
|
||
Statistics: | ||
- Nodes: 33868 | ||
- Edges: 305672 | ||
- Number of Classes: 40 | ||
|
||
#### Citation | ||
|
||
- Original Source | ||
+ [Website](https://github.com/TRAIS-Lab/LLM-Structured-Data) | ||
|
||
|
||
|
||
``` | ||
@misc{huang2023llms, | ||
title={Can LLMs Effectively Leverage Graph Structural Information: When and Why}, | ||
author={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma}, | ||
year={2023}, | ||
eprint={2309.16595}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.LG} | ||
} | ||
``` | ||
|
||
- Current Version | ||
+ [Website](https://github.com/TRAIS-Lab/LLM-Structured-Data) | ||
|
||
|
||
|
||
``` | ||
@misc{huang2023llms, | ||
title={Can LLMs Effectively Leverage Graph Structural Information: When and Why}, | ||
author={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma}, | ||
year={2023}, | ||
eprint={2309.16595}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.LG} | ||
} | ||
``` | ||
|
||
|
||
## Available Tasks | ||
|
||
|
||
- Task type: `NodeClassification` | ||
|
||
|
||
#### Citation | ||
|
||
``` | ||
@misc{huang2023llms, | ||
title={Can LLMs Effectively Leverage Graph Structural Information: When and Why}, | ||
author={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma}, | ||
year={2023}, | ||
eprint={2309.16595}, | ||
archivePrefix={arXiv}, | ||
primaryClass={cs.LG} | ||
} | ||
``` | ||
|
||
<!-- Insert the BibTeX citation into the above code block. --> | ||
|
||
## Preprocessing | ||
|
||
The data files and task config file in GLI format are transformed in arxiv-2023.ipynb file. Raw data aquried in TRAIS-Lab/LLM-Structured-Data folder. | ||
|
||
### Requirements | ||
|
||
``` | ||
openai | ||
pytorch | ||
PyG | ||
ogb | ||
``` | ||
|
||
|
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# arxiv-2023 conversion script" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Data" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"/var/folders/51/yl5_04f90f13_y68cyyqz0j80000gn/T/ipykernel_48974/3045227301.py:3: DeprecationWarning: \n", | ||
"Pyarrow will become a required dependency of pandas in the next major release of pandas (pandas 3.0),\n", | ||
"(to allow more performant data types, such as the Arrow string type, and better interoperability with other libraries)\n", | ||
"but was not found to be installed on your system.\n", | ||
"If this would cause problems for you,\n", | ||
"please provide us feedback at https://github.com/pandas-dev/pandas/issues/54466\n", | ||
" \n", | ||
" import pandas as pd\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"import os\n", | ||
"import torch\n", | ||
"import pandas as pd\n", | ||
"import numpy\n", | ||
"import json" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"base_path=\"./LLM/dataset/arxiv_2023\"\n", | ||
"# Load processed data\n", | ||
"edge_index = torch.load(os.path.join(base_path, \"processed\", \"edge_index.pt\"))\n", | ||
" \n", | ||
"# Load raw data\n", | ||
"# edge_df = pd.read_csv(os.path.join(base_path, \"raw\", \"edge.csv.gz\"), compression='gzip')\n", | ||
"titles_df = pd.read_csv(os.path.join(base_path, \"raw\", \"titles.csv.gz\"), compression='gzip')\n", | ||
"abstracts_df = pd.read_csv(os.path.join(base_path, \"raw\", \"abstracts.csv.gz\"), compression='gzip')\n", | ||
"ids_df = pd.read_csv(os.path.join(base_path, \"raw\", \"ids.csv.gz\"), compression='gzip')\n", | ||
"labels_df = pd.read_csv(os.path.join(base_path, \"raw\", \"labels.csv.gz\"), compression='gzip')\n", | ||
" \n", | ||
"# Load split data\n", | ||
"train_id_df = pd.read_csv(os.path.join(base_path, \"split\", \"train.csv.gz\"), compression='gzip')\n", | ||
"val_id_df = pd.read_csv(os.path.join(base_path, \"split\", \"valid.csv.gz\"), compression='gzip')\n", | ||
"test_id_df = pd.read_csv(os.path.join(base_path, \"split\", \"test.csv.gz\"), compression='gzip')\n", | ||
" \n", | ||
"num_nodes = len(ids_df)\n", | ||
"titles = titles_df['titles'].tolist()\n", | ||
"abstracts = abstracts_df['abstracts'].tolist()\n", | ||
"ids = ids_df['ids'].tolist()\n", | ||
"labels = labels_df['labels'].tolist()\n", | ||
"train_id = train_id_df['train_id'].tolist()\n", | ||
"val_id = val_id_df['val_id'].tolist()\n", | ||
"test_id = test_id_df['test_id'].tolist()\n", | ||
"\n", | ||
"features = torch.load(os.path.join(base_path, \"processed\", \"features.pt\"))\n", | ||
"\n", | ||
"y = torch.load(os.path.join(base_path, \"processed\", \"labels.pt\"))\n", | ||
" \n", | ||
"train_mask = torch.tensor([x in train_id for x in range(num_nodes)])\n", | ||
"val_mask = torch.tensor([x in val_id for x in range(num_nodes)])\n", | ||
"test_mask = torch.tensor([x in test_id for x in range(num_nodes)])\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from gli.io import save_graph, Attribute\n", | ||
"node_attrs=[\n", | ||
" Attribute(\n", | ||
" \"Titles\",\n", | ||
" numpy.array(titles),\n", | ||
" \"Title of each node\",\n", | ||
" \"str\",\n", | ||
" \"Tensor\",\n", | ||
" ),\n", | ||
" Attribute(\n", | ||
" \"Abstracts\",\n", | ||
" numpy.array(abstracts),\n", | ||
" \"Abstract of each article(node)\",\n", | ||
" \"str\",\n", | ||
" \"Tensor\",\n", | ||
" ),\n", | ||
" Attribute(\n", | ||
" \"Ids\",\n", | ||
" numpy.array([str(id) for id in ids]),\n", | ||
" \"Id of each article(node)\",\n", | ||
" \"str\",\n", | ||
" \"Tensor\",\n", | ||
" ),\n", | ||
" Attribute(\n", | ||
" \"Labels\",\n", | ||
" numpy.array(labels),\n", | ||
" \"Label\",\n", | ||
" \"str\",\n", | ||
" \"Tensor\",\n", | ||
" ),\n", | ||
" \n", | ||
"]\n", | ||
"\n", | ||
"metadata = save_graph(\n", | ||
" name=\"arxiv-2023\",\n", | ||
" edge=numpy.array(edge_index).T,\n", | ||
" num_nodes=num_nodes,\n", | ||
" node_attrs=node_attrs,\n", | ||
" description=\"ARXIV-2023 dataset.\",\n", | ||
" cite=\"@misc{huang2023llms,\\ntitle={Can LLMs Effectively Leverage Graph Structural Information: When and Why},\\nauthor={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},\\nyear={2023},\\neprint={2309.16595},\\narchivePrefix={arXiv},\\nprimaryClass={cs.LG}\\n}\",\n", | ||
")\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([ 4, 6, 9, ..., 33865, 33866, 33867])" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"from gli.io import save_task_node_classification\n", | ||
"\n", | ||
"task_data = save_task_node_classification(\n", | ||
" name=\"arxiv-2023\",\n", | ||
" description=\"Node classification on arxiv-2023 dataset.\",\n", | ||
" feature=[\"Node/Titles\",\"Node/Abstracts\"],\n", | ||
" target=\"Node/Labels\",\n", | ||
" num_classes=40,\n", | ||
" train_set=train_mask.nonzero().squeeze().numpy(),\n", | ||
" val_set=val_mask.nonzero().nonzero().squeeze().numpy(),\n", | ||
" test_set=test_mask.nonzero().nonzero().squeeze().numpy(),\n", | ||
" task_id=\"1\"\n", | ||
")\n", | ||
"train_mask.nonzero().squeeze().numpy()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "env", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
{ | ||
"description": "ARXIV-2023 dataset.", | ||
"data": { | ||
"Node": { | ||
"Titles": { | ||
"description": "Title of each node", | ||
"type": "str", | ||
"format": "Tensor", | ||
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz", | ||
"key": "Node_Titles" | ||
}, | ||
"Abstracts": { | ||
"description": "Abstract of each article(node)", | ||
"type": "str", | ||
"format": "Tensor", | ||
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz", | ||
"key": "Node_Abstracts" | ||
}, | ||
"Ids": { | ||
"description": "Id of each article(node)", | ||
"type": "str", | ||
"format": "Tensor", | ||
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz", | ||
"key": "Node_Ids" | ||
}, | ||
"Labels": { | ||
"description": "Label", | ||
"type": "str", | ||
"format": "Tensor", | ||
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz", | ||
"key": "Node_Labels" | ||
} | ||
}, | ||
"Edge": { | ||
"_Edge": { | ||
"file": "arxiv-2023__graph__4c1b3c1c22882e1d9660a6e5cafcd1a4.npz", | ||
"key": "Edge_Edge" | ||
} | ||
}, | ||
"Graph": { | ||
"_NodeList": { | ||
"file": "arxiv-2023__graph__Graph_NodeList__a133ca6cee0eff3cc4ae10d024cc0c02.sparse.npz" | ||
} | ||
} | ||
}, | ||
"citation": "@misc{huang2023llms,\ntitle={Can LLMs Effectively Leverage Graph Structural Information: When and Why},\nauthor={Jin Huang and Xingjian Zhang and Qiaozhu Mei and Jiaqi Ma},\nyear={2023},\neprint={2309.16595},\narchivePrefix={arXiv},\nprimaryClass={cs.LG}\n}", | ||
"is_heterogeneous": false | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
{ | ||
"description": "Node classification on arxiv-2023 dataset.", | ||
"type": "NodeClassification", | ||
"feature": [ | ||
"Node/Titles", | ||
"Node/Abstracts" | ||
], | ||
"target": "Node/Labels", | ||
"num_classes": 40, | ||
"train_set": { | ||
"file": "arxiv-2023__task_node_classification_1__707e9444940a9744a72ae8a990fe9136.npz", | ||
"key": "train_set" | ||
}, | ||
"val_set": { | ||
"file": "arxiv-2023__task_node_classification_1__707e9444940a9744a72ae8a990fe9136.npz", | ||
"key": "val_set" | ||
}, | ||
"test_set": { | ||
"file": "arxiv-2023__task_node_classification_1__707e9444940a9744a72ae8a990fe9136.npz", | ||
"key": "test_set" | ||
} | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.