Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
206 changes: 202 additions & 4 deletions src/ampl_model.jl
Original file line number Diff line number Diff line change
Expand Up @@ -322,6 +322,36 @@ end

NLPModels.jth_con(nlp::AmplModel, x::AbstractVector, j::Int) = jth_con(nlp, Vector{Cdouble}(x), j)

function NLPModels.cons_lin!(nlp::AmplModel, x::AbstractVector, c::AbstractVector)
@check_ampl_model
length(c) >= nlp.meta.nlin || error("x must have length at least $(nlp.meta.nlin)")
length(x) >= nlp.meta.nvar || error("x must have length at least $(nlp.meta.nvar)")

k = 1
for j in nlp.meta.lin
c[k] = jth_con(nlp, x, j)
k += 1
nlp.counters.neval_jcon -= 1
end
nlp.counters.neval_cons_lin += 1
return c
end

function NLPModels.cons_nln!(nlp::AmplModel, x::AbstractVector, c::AbstractVector)
@check_ampl_model
length(c) >= nlp.meta.nnln || error("x must have length at least $(nlp.meta.nnln)")
length(x) >= nlp.meta.nvar || error("x must have length at least $(nlp.meta.nvar)")

k = 1
for j in nlp.meta.nln
c[k] = jth_con(nlp, x, j)
k += 1
nlp.counters.neval_jcon -= 1
end
nlp.counters.neval_cons_nln += 1
return c
end

function NLPModels.jth_congrad!(nlp::AmplModel, x::Vector{Cdouble}, j::Int, g::Vector{Cdouble})
@check_ampl_model
(1 <= j <= nlp.meta.ncon) || error("expected 0 ≤ j ≤ $(nlp.meta.ncon)")
Expand Down Expand Up @@ -409,6 +439,143 @@ function NLPModels.jac_structure!(
return rows, cols
end

#=
function _jac_structure(nlp)
rows = Vector{Cint}(undef, nlp.meta.nnzj)
cols = Vector{Cint}(undef, nlp.meta.nnzj)
@asl_call(
:asl_jac_structure,
Nothing,
(Ptr{Nothing}, Ptr{Int32}, Ptr{Int32}),
nlp.__asl,
rows,
cols
)
# Use 1-based indexing.
@. rows[1:(nlp.meta.nnzj)] += Cint(1)
@. cols[1:(nlp.meta.nnzj)] += Cint(1)
return rows, cols
end
=#

###########################################################################################

function NLPModels.jac_lin_structure!(
nlp::AmplModel,
rows::AbstractVector{<:Integer},
cols::AbstractVector{<:Integer},
)
# rows_ = Vector{Cint}(undef, nlp.meta.lin_nnzj)
# cols_ = Vector{Cint}(undef, nlp.meta.lin_nnzj)

#=
for j in nlp.meta.lin
nnzj = Cint(@asl_call(:asl_sparse_congrad_nnz, Csize_t, (Ptr{Nothing}, Cint), nlp.__asl, j - 1))
# How to get the structure separately?
# jth_congrad!(nlp, x, j, g::AbstractVector)
end
=#

rows_, cols_ = jac_structure(nlp)
k = 1
for i =1:nlp.meta.nnzj
if rows_[i] in nlp.meta.lin
rows[k] = findfirst(x -> x == rows_[i], nlp.meta.lin) # __rows[i] - nlp.meta.nnln
cols[k] = cols_[i]
k+=1
end
end

return rows, cols
end

function NLPModels.jac_lin_coord!(
nlp::AmplModel,
x::AbstractVector,
vals::AbstractVector{<:AbstractFloat},
)
#=
vals_ = Vector{Cdouble}(undef, nlp.meta.lin_nnzj)

for j in nlp.meta.lin
nnzj = @asl_call(:asl_sparse_congrad_nnz, Csize_t, (Ptr{Nothing}, Cint), asl, j - 1)
# How to get the structure separately?
# jth_congrad!(nlp, x, j, g::AbstractVector)
end
=#

rows_, cols_ = jac_structure(nlp)
__vals = jac_coord(nlp, x)
nlp.counters.neval_jac -= 1
k = 1
for i =1:nlp.meta.nnzj
if rows_[i] in nlp.meta.lin
vals[k] = __vals[i]
k+=1
end
end
nlp.counters.neval_jac_lin += 1

return vals
end

function NLPModels.jac_nln_structure!(
nlp::AmplModel,
rows::AbstractVector{<:Integer},
cols::AbstractVector{<:Integer},
)
#=
for j in nlp.meta.nln
nnzj = @asl_call(:asl_sparse_congrad_nnz, Csize_t, (Ptr{Nothing}, Cint), nlp.__asl, j - 1)
# How to get the structure separately?
# jth_congrad!(nlp, x, j, g::AbstractVector)
end
=#

rows_, cols_ = jac_structure(nlp)
k = 1
for i =1:nlp.meta.nnzj
if rows_[i] in nlp.meta.nln
rows[k] = findfirst(x -> x == rows_[i], nlp.meta.nln) # __rows[i]
cols[k] = cols_[i]
k+=1
end
end

return rows, cols
end

function NLPModels.jac_nln_coord!(
nlp::AmplModel,
x::AbstractVector,
vals::AbstractVector{<:AbstractFloat},
)
#=
vals_ = Vector{Cdouble}(undef, nlp.meta.nln_nnzj)

for j in nlp.meta.nln
nnzj = @asl_call(:asl_sparse_congrad_nnz, Csize_t, (Ptr{Nothing}, Cint), asl, j - 1)
# How to get the structure separately?
# jth_congrad!(nlp, x, j, g::AbstractVector)
end
=#
rows_, cols_ = jac_structure(nlp)
__vals = jac_coord(nlp, x)
nlp.counters.neval_jac -= 1
k = 1
for i =1:nlp.meta.nnzj
if rows_[i] in nlp.meta.nln
vals[k] = __vals[i]
k+=1
end
end
nlp.counters.neval_jac_nln += 1

return vals
end

###########################################################################################

function NLPModels.jac_coord!(nlp::AmplModel, x::Vector{Cdouble}, vals::Vector{Cdouble})
@check_ampl_model
length(x) >= nlp.meta.nvar || error("x must have length at least $(nlp.meta.nvar)")
Expand Down Expand Up @@ -442,10 +609,17 @@ function NLPModels.jac_coord!(
return vals
end

function NLPModels.jprod!(nlp::AmplModel, x::AbstractVector, v::AbstractVector, Jv::AbstractVector)
nlp.counters.neval_jac -= 1
nlp.counters.neval_jprod += 1
Jv[1:(nlp.meta.ncon)] = jac(nlp, Vector{Cdouble}(x)) * v
function NLPModels.jprod_lin!(nlp::AmplModel, x::AbstractVector, v::AbstractVector, Jv::AbstractVector)
nlp.counters.neval_jac_lin -= 1
nlp.counters.neval_jprod_lin += 1
Jv[1:(nlp.meta.nlin)] = jac_lin(nlp, Vector{Cdouble}(x)) * v
return Jv
end

function NLPModels.jprod_nln!(nlp::AmplModel, x::AbstractVector, v::AbstractVector, Jv::AbstractVector)
nlp.counters.neval_jac_nln -= 1
nlp.counters.neval_jprod_nln += 1
Jv[1:(nlp.meta.nnln)] = jac_nln(nlp, Vector{Cdouble}(x)) * v
return Jv
end

Expand All @@ -461,6 +635,30 @@ function NLPModels.jtprod!(
return Jtv
end

function NLPModels.jtprod_lin!(
nlp::AmplModel,
x::AbstractVector,
v::AbstractVector,
Jtv::AbstractVector,
)
nlp.counters.neval_jac_lin -= 1
nlp.counters.neval_jtprod_lin += 1
Jtv[1:(nlp.meta.nvar)] = jac_lin(nlp, Vector{Cdouble}(x))' * v
return Jtv
end

function NLPModels.jtprod_nln!(
nlp::AmplModel,
x::AbstractVector,
v::AbstractVector,
Jtv::AbstractVector,
)
nlp.counters.neval_jac_nln -= 1
nlp.counters.neval_jtprod_nln += 1
Jtv[1:(nlp.meta.nvar)] = jac_nln(nlp, Vector{Cdouble}(x))' * v
return Jtv
end

function NLPModels.hprod!(
nlp::AmplModel,
x::AbstractVector,
Expand Down