Skip to content

Kaggle-Competitions-Code/BioNNE-L

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BioNNE-L

Step1: Retrieval

English

Dev

Model Acc@1 Acc@5 Acc@10
gebert_eng_gat 0.5898 0.7654 0.7979
BioLinkBERT-large 0.427 0.603 \
BioLinkBERT-base 0.472 0.653 0.671
SapBERT-from-PubMedBERT-fulltext 0.6115 0.7698 0.8043
SapBERT-from-PubMedBERT-fulltext-mean-token 0.6038 0.7723 0.8184

Train

Model Acc@1 Acc@5 Acc@10
gebert_eng_gat 0.3732 0.6494 0.7431
SapBERT-from-PubMedBERT-fulltext 0.3595 0.6509 0.7513
SapBERT-from-PubMedBERT-fulltext-mean-token 0.3587 0.6349 0.7253

Russian

Dev

Model Acc@1 Acc@5 Acc@10
SapBERT-UMLS-2020AB-all-lang-from-XLMR 0.4914 0.5497 0.5686
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.5103 0.5613 0.5763

Bilingual

Dev

Model Acc@1 Acc@5 Acc@10
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.5389 0.7171 0.7500

Step2: Rank

English

Model CV(Acc) LB(Acc) LB-Post(Acc) Base on(Acc@1/Acc@5/Acc@10) Approach P.S.
gebert_eng_gat \ \ \ \ Multilabel \
BioLinkBERT-base 0.5441 \ \ 0.5285/0.7658/0.8011 Multilabel \
BioLinkBERT-large 0.5269 \ \ 0.5285/0.7658/0.8011 Multilabel \
BiomedNLP-BiomedBERT-base-uncased-abstract 0.5441 \ \ 0.5285/0.7658/0.8011 Multilabel \
bart-base-uncased 0.5253 \ \ 0.5285/0.7658/0.8011 Multilabel \
BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext \ \ \ \ regression \
BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext 0.6536 \ \ 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train, retrieval_topk: 5, learning_rate: 7e-6
BiomedNLP-BiomedBERT-base-uncased-abstract 0.6604 \ \ 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train, retrieval_topk: 5, learning_rate: 7e-6
BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext 0.6532 \ \ 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train, retrieval_topk: 10, learning_rate: 7e-6
BiomedNLP-KRISSBERT-PubMed-UMLS-EL 0.6576 \ \ 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train, retrieval_topk: 5, learning_rate: 1e-5
BiomedNLP-BiomedBERT-base-uncased-abstract 0.6632 0.6906 0.6197 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train, retrieval_topk: 5, learning_rate: 1e-5
BiomedNLP-BiomedBERT-base-uncased-abstract \ \ 0.6273 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train + dev, retrieval_topk: 5, learning_rate: 1e-5, epoch: 2
BiomedNLP-BiomedBERT-base-uncased-abstract \ \ 0.6229 0.6115/0.7698/0.8043 2-Classification data: MedMentions + train + dev, retrieval_topk: 5, learning_rate: 1e-5, epoch: 2, context-relevant
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large \ \ 0.6370 0.6115/0.7698/0.8043 2-Classification data: train + medmention + mcn + dev, epoch: 1

Extra Dataset

dataset Performance
chanzuckerberg/MedMentions(github) +6%

Russian

Model CV(Acc) LB(Acc) LB-Post(Acc) Base on(Acc@1/Acc@5/Acc@10) Approach P.S.
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large \ 0.5436 0.5366 0.5103/0.5613/0.5763 Step1-only \
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.5338 0.5687 0.5631 0.5103/0.5613/0.5763 2-Classification data: train
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.5467 0.5824 0.5725 0.5103/0.5613/0.5763 2-Classification data: train + mcn, epoch: 5
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.5467 0.5824 0.5704 0.5103/0.5613/0.5763 2-Classification data: train + mcn, epoch: 5, context-relevant
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large \ \ 0.5727 0.5103/0.5613/0.5763 2-Classification data: train + mcn + dev, epoch: 5, context-relevant

Bilingual

Model CV(Acc) LB(Acc) LB-Post(Acc) Base on(Acc@1/Acc@5/Acc@10) Approach P.S.
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large \ 0.5674 0.5414 0.5389/0.7171/0.7500 Step1-only \
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.6083 0.6404 0.6072 0.5389/0.7171/0.7500 2-Classification data: train, epoch: 1
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large 0.6319 \ 0.6315 0.5389/0.7171/0.7500 2-Classification data: train + medmention + mcn, epoch: 1
SapBERT-UMLS-2020AB-all-lang-from-XLMR-large \ \ 0.6342 0.5389/0.7171/0.7500 2-Classification data: train + medmention + mcn + dev, epoch: 1

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages