-
Notifications
You must be signed in to change notification settings - Fork 20
BAMF Lung and FDG-Avid Tumor #86
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
sample:
idc_version: Version 5: Updated 2020/12/22
data:
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.184691786899278131062806456462
aws_url: s3://idc-open-data/aafd2a22-6236-4eff-b541-1dfd8de923e8/*
path: case_study1/ct
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.168809572664004911257595338967
aws_url: s3://idc-open-data/c6ff3b5f-eb4d-4a08-8e6b-3004b2ebbc0f/*
path: case_study1/pt
reference:
url: https://drive.google.com/file/d/1jcujIoSvYG0Owps8nZVBBbjSGnCk7Wdx/view?usp=sharing |
|
Added screenshots |
|
@LennyN95 could someone review this so that i can do similar fixes for other PRs and submit? |
LennyN95
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Overall great implementation. I've made some points on the usage of TS as part of this model that I'd like to discuss briefly before moving forward.
LennyN95
left a comment
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks good! Some minor suggestions below.
|
/review @LennyN95 Please review and let me know for more changes. |
|
/test sample:
idc_version: Version 5: Updated 2020/12/22
data:
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.184691786899278131062806456462
aws_url: s3://idc-open-data/aafd2a22-6236-4eff-b541-1dfd8de923e8/*
path: 'case_study1/ct'
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.168809572664004911257595338967
aws_url: s3://idc-open-data/c6ff3b5f-eb4d-4a08-8e6b-3004b2ebbc0f/*
path: 'case_study1/pt'
reference:
url: https://drive.google.com/file/d/1MGe1dR22GF-oF7BwQ4bE3Oq-9KBnohku |
|
/test sample:
idc_version: "Data Release 5.0 December 22, 2020"
data:
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.184691786899278131062806456462
aws_url: s3://idc-open-data/aafd2a22-6236-4eff-b541-1dfd8de923e8/*
path: 'case_study1/ct'
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.6655.2359.168809572664004911257595338967
aws_url: s3://idc-open-data/c6ff3b5f-eb4d-4a08-8e6b-3004b2ebbc0f/*
path: 'case_study1/pt'
reference:
url: https://drive.google.com/file/d/1MGe1dR22GF-oF7BwQ4bE3Oq-9KBnohku/view?usp=sharing |
|
/test attaching segmentation sample:
idc_version: 15.0
data:
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.322501480363502116767369539775
aws_url: s3://idc-open-data/7d19e1ee-f2c9-4158-a6e2-d093468e393b/*
path: case1/ct
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.329094085186214039017114090511
aws_url: s3://idc-open-data/c39ec1fc-f5d3-4685-9077-dafd79bc5970/*
path: case1/pt
reference:
url: https://github.com/user-attachments/files/16797384/output.zipTest Results (24.08.29_15.15.30_AkoraywFNq)id: 02819301-0b3b-4324-9723-77207b8708d6
date: '2024-08-29 16:21:07'
checked_files:
- file: bamf_pet_ct_lung_tumor.seg.dcm
path: /app/test/src/case1/bamf_pet_ct_lung_tumor.seg.dcm
checks:
- checker: DicomsegContentCheck
notes:
- label: Segment Count
description: The number of segments identified in the inspected dicomseg file.
info: 2
findings:
- label: Dice Score Difference
description: Dice score between reference and test image
subpath: 'segment #1'
info: 0.975907953098239
summary:
files_missing: 0
files_extra: 0
checks:
DicomsegContentCheck:
files: 1
findings:
Dice Score Difference: 1
conclusion: false |
|
/test attaching segmentation sample:
idc_version: 15.0
data:
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.322501480363502116767369539775
aws_url: s3://idc-open-data/7d19e1ee-f2c9-4158-a6e2-d093468e393b/*
path: case1/ct
- SeriesInstanceUID: 1.3.6.1.4.1.14519.5.2.1.4334.1501.329094085186214039017114090511
aws_url: s3://idc-open-data/c39ec1fc-f5d3-4685-9077-dafd79bc5970/*
path: case1/pt
reference:
url: https://github.com/user-attachments/files/16927593/output.zip
|
|
@jithenece the test results suggest there is a quite high difference (DiceScore), could you elaborate on this? Please note, we updated our base image. All mhub dependencies are now installed in a virtual environment under We also simplified our test routine. Sample and reference data now have to be uploaded to Zenodo and provided in a mhub.tom file at the project root. The process how to create and provide these sample data is explained in the updated testing phase article of our documentation. Under doi.org/10.5281/zenodo.13785615 we provide sample data as a reference. |
|
@jithenece NNUnet installs torch 2.2.6 now, which introduces a breaking change. Please replace your |
|
@LennyN95 invite sent |
- pin torch to v2.2.2
Test Resultsid: bada4f00-19d9-437d-9532-74e540bbbf1a
name: MHub Test Report (default)
date: '2025-02-18 16:53:55'
checked_files:
- file: bamf_pet_ct_lung_tumor.seg.dcm
path: /app/data/output_data/case1/bamf_pet_ct_lung_tumor.seg.dcm
checks:
- checker: DicomsegContentCheck
notes:
- label: Segment Count
description: The number of segments identified in the inspected dicomseg file.
info: 2
summary:
files_missing: 0
files_extra: 0
checks:
DicomsegContentCheck:
files: 1
conclusion: true
|
Pretrained model for 3D semantic image segmentation of the FDG-avid lesions from PT/CT scans