Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions ldm/models/diffusion/ddim.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def __init__(self, model, schedule="linear", **kwargs):

def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device("cuda"):
if attr.device != torch.device("cuda") and torch.cuda.is_available():
attr = attr.to(torch.device("cuda"))
setattr(self, name, attr)

Expand Down Expand Up @@ -238,4 +238,4 @@ def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unco
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
return x_dec
return x_dec
2 changes: 1 addition & 1 deletion ldm/models/diffusion/plms.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ def __init__(self, model, schedule="linear", **kwargs):

def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device("cuda"):
if attr.device != torch.device("cuda") and torch.cuda.is_available():
attr = attr.to(torch.device("cuda"))
setattr(self, name, attr)

Expand Down
10 changes: 5 additions & 5 deletions ldm/modules/encoders/modules.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,7 @@ def forward(self, batch, key=None):

class TransformerEmbedder(AbstractEncoder):
"""Some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda" if torch.cuda.is_available() else "cpu"):
super().__init__()
self.device = device
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
Expand All @@ -52,7 +52,7 @@ def encode(self, x):

class BERTTokenizer(AbstractEncoder):
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
def __init__(self, device="cuda", vq_interface=True, max_length=77):
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu", vq_interface=True, max_length=77):
super().__init__()
from transformers import BertTokenizerFast # TODO: add to reuquirements
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
Expand Down Expand Up @@ -80,7 +80,7 @@ def decode(self, text):
class BERTEmbedder(AbstractEncoder):
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
device="cuda" if torch.cuda.is_available() else "cpu", use_tokenizer=True, embedding_dropout=0.0):
super().__init__()
self.use_tknz_fn = use_tokenizer
if self.use_tknz_fn:
Expand Down Expand Up @@ -136,7 +136,7 @@ def encode(self, x):

class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda" if torch.cuda.is_available() else "cpu", max_length=77):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
Expand Down Expand Up @@ -231,4 +231,4 @@ def forward(self, x):
if __name__ == "__main__":
from ldm.util import count_params
model = FrozenCLIPEmbedder()
count_params(model, verbose=True)
count_params(model, verbose=True)
8 changes: 5 additions & 3 deletions notebook_helpers.py
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,8 @@ def load_model_from_config(config, ckpt):
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
model.cuda()
if torch.cuda.is_available():
model.cuda()
model.eval()
return {"model": model}, global_step

Expand Down Expand Up @@ -117,7 +118,8 @@ def get_cond(mode, selected_path):
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.

c = c.to(torch.device("cuda"))
if torch.cuda.is_available():
c = c.to(torch.device("cuda"))
example["LR_image"] = c
example["image"] = c_up

Expand Down Expand Up @@ -267,4 +269,4 @@ def make_convolutional_sample(batch, model, mode="vanilla", custom_steps=None, e
log["sample"] = x_sample
log["time"] = t1 - t0

return log
return log
8 changes: 6 additions & 2 deletions scripts/knn2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,8 @@ def load_model_from_config(config, ckpt, verbose=False):
print("unexpected keys:")
print(u)

model.cuda()
if torch.cuda.is_available():
model.cuda()
model.eval()
return model

Expand Down Expand Up @@ -358,7 +359,10 @@ def __call__(self, x, n):
uc = None
if searcher is not None:
nn_dict = searcher(c, opt.knn)
c = torch.cat([c, torch.from_numpy(nn_dict['nn_embeddings']).cuda()], dim=1)
nn_embeddings = torch.from_numpy(nn_dict['nn_embeddings'])
if torch.cuda.is_available():
nn_embeddings = nn_embeddings.cuda()
c = torch.cat([c, nn_embeddings], dim=1)
if opt.scale != 1.0:
uc = torch.zeros_like(c)
if isinstance(prompts, tuple):
Expand Down
3 changes: 2 additions & 1 deletion scripts/sample_diffusion.py
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,8 @@ def get_parser():
def load_model_from_config(config, sd):
model = instantiate_from_config(config)
model.load_state_dict(sd,strict=False)
model.cuda()
if torch.cuda.is_available():
model.cuda()
model.eval()
return model

Expand Down
3 changes: 2 additions & 1 deletion scripts/txt2img.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,8 @@ def load_model_from_config(config, ckpt, verbose=False):
print("unexpected keys:")
print(u)

model.cuda()
if torch.cuda.is_available():
model.cuda()
model.eval()
return model

Expand Down