Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
227 changes: 162 additions & 65 deletions src/psfmachine/machine.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@
sparse_lessthan,
_combine_A,
threshold_bin,
get_breaks,
)
from .aperture import optimize_aperture, compute_FLFRCSAP, compute_CROWDSAP

Expand Down Expand Up @@ -645,9 +646,7 @@ def _time_bin(self, npoints=200, downsample=False):
"""

# Where there are break points in the time array
splits = np.append(
np.append(0, np.where(np.diff(self.time) > 0.1)[0] + 1), len(self.time)
)
splits = get_breaks(self.time)
# if using poscorr, find and add discontinuity in poscorr data
if hasattr(self, "pos_corr1") and self.time_corrector in [
"pos_corr",
Expand Down Expand Up @@ -681,10 +680,20 @@ def _time_bin(self, npoints=200, downsample=False):
# within them
breaks = []
for spdx in range(len(splits_a)):
breaks.append(splits_a[spdx] + np.arange(0, dsplits[spdx]) * npoints)
# we include the last cadance as 99% of the sequence lenght
breaks.append(int(self.nt * 0.99))
breaks = np.hstack(breaks)
if not downsample:
breaks.append(splits_a[spdx] + np.arange(0, dsplits[spdx]) * npoints)
else:
# if downsample, the knots are spaced by npoints untill the end of the
# segment
breaks.append(
np.linspace(
splits_a[spdx],
splits_b[spdx] - int(self.nt * 0.01),
dsplits[spdx],
dtype=int,
)
)
breaks = np.unique(np.hstack(breaks))

if not downsample:
# time averaged between breaks
Expand Down Expand Up @@ -722,13 +731,8 @@ def _time_bin(self, npoints=200, downsample=False):
]
)
else:
dwns_idx = (
np.vstack(
[np.median(t1) for t1 in np.array_split(np.arange(self.nt), breaks)]
)
.ravel()
.astype(int)
)
# use breaks as downsample points
dwns_idx = breaks
tm = self.time[dwns_idx]
ta = (self.time - tm.mean()) / (tm.max() - tm.mean())
fm = np.asarray(
Expand Down Expand Up @@ -783,6 +787,12 @@ def _time_bin(self, npoints=200, downsample=False):
)
pc1_smooth = np.array(pc1_smooth)
pc2_smooth = np.array(pc2_smooth)
pc1_smooth = (pc1_smooth - pc1_smooth.mean()) / (
pc1_smooth.max() - pc1_smooth.mean()
)
pc2_smooth = (pc2_smooth - pc2_smooth.mean()) / (
pc2_smooth.max() - pc2_smooth.mean()
)

# do poscorr binning
if not downsample:
Expand Down Expand Up @@ -810,7 +820,7 @@ def _time_bin(self, npoints=200, downsample=False):

return ta, tm, fm_raw, fm, fem

def build_time_model(self, plot=False, downsample=False):
def build_time_model(self, plot=False, downsample=False, split_time_model=False):
"""
Builds a time model that moves the PRF model to account for the scene movement
due to velocity aberration. It has two methods to choose from using the
Expand All @@ -827,6 +837,11 @@ def build_time_model(self, plot=False, downsample=False):
downsample: boolean
If True the `time` and `pos_corr` arrays will be downsampled instead of
binned.
split_time_model : boolean, list/array of ints
If `True` will split the light curve into segments to fit different time
models with a commong pixel normalization. If `False` will fit the full
time series as one segment. If list or numpy array of ints, will use the
index values as segment breaks.
"""
if hasattr(self, "pos_corr1") and self.time_corrector in [
"pos_corr",
Expand Down Expand Up @@ -855,6 +870,7 @@ def build_time_model(self, plot=False, downsample=False):
) = self._time_bin(npoints=self.n_time_points, downsample=downsample)

self._whitened_time = time_original
self.downsample_time_knots = downsample
# not necessary to take value from Quantity to do .multiply()
dx, dy = (
self.uncontaminated_source_mask.multiply(self.dra),
Expand Down Expand Up @@ -882,56 +898,108 @@ def build_time_model(self, plot=False, downsample=False):
# Cartesian spline with time dependence
A3 = _combine_A(A2, time=time_binned)

# No saturated pixels
k = (
(flux_binned_raw < 1.4e5).any(axis=0)[None, :]
* np.ones(flux_binned_raw.shape, bool)
).ravel()
# No faint pixels
k &= (
(flux_binned_raw > 10).any(axis=0)[None, :]
* np.ones(flux_binned_raw.shape, bool)
).ravel()
# No huge variability
k &= (
(np.abs(flux_binned - 1) < 1).all(axis=0)[None, :]
* np.ones(flux_binned.shape, bool)
).ravel()
# No nans
k &= np.isfinite(flux_binned.ravel()) & np.isfinite(flux_err_binned.ravel())
prior_sigma = np.ones(A3.shape[1]) * 10
prior_mu = np.zeros(A3.shape[1])

for count in [0, 1, 2]:
sigma_w_inv = A3[k].T.dot(
(A3.multiply(1 / flux_err_binned.ravel()[:, None] ** 2)).tocsr()[k]
)
sigma_w_inv += np.diag(1 / prior_sigma ** 2)
# Fit the flux - 1
B = A3[k].T.dot(
((flux_binned.ravel() - 1) / flux_err_binned.ravel() ** 2)[k]
# fit the time model for each segment
# use user input
if isinstance(split_time_model, (np.ndarray, list)):
# we make sure first and last index are included and sorted
splits = np.unique(np.append(split_time_model, [0, len(self.time)]))
else:
# we find the splits in data
if split_time_model:
splits = get_breaks(self.time)
else:
splits = np.array([0, len(self.time)])

seg_time_model_w, pix_mask_k = [], []
# we iterate over segements
for bk in range(len(splits) - 1):
# find the right mask that select the binned times andd flux to fit the
# time model
seg_mask = (time_binned[:, 0] >= time_original[splits[bk]]) & (
time_binned[:, 0] < time_original[splits[bk + 1] - 1]
)
B += prior_mu / (prior_sigma ** 2)
time_model_w = np.linalg.solve(sigma_w_inv, B)
res = flux_binned - A3.dot(time_model_w).reshape(flux_binned.shape)
res = np.ma.masked_array(res, (~k).reshape(flux_binned.shape))
bad_targets = sigma_clip(res, sigma=5).mask
bad_targets = (
np.ones(flux_binned.shape, bool) & bad_targets.any(axis=0)
# need to rebuild the A3 DM to use the rigth times/poscorrs
A2 = sparse.vstack([A_c] * time_binned[seg_mask].shape[0], format="csr")
if hasattr(self, "pos_corr1") and self.time_corrector in [
"pos_corr",
"centroid",
]:
A3 = _combine_A(
A2, poscorr=[poscorr1_binned[seg_mask], poscorr2_binned[seg_mask]]
)
else:
A3 = _combine_A(A2, time=time_binned[seg_mask])

# No saturated pixels
k = (
(flux_binned_raw < 1.4e5).all(axis=0)[None, :]
* np.ones(flux_binned_raw[seg_mask].shape, bool)
).ravel()
# No faint pixels
k &= (
(flux_binned_raw[seg_mask] > 100).all(axis=0)[None, :]
* np.ones(flux_binned_raw[seg_mask].shape, bool)
).ravel()
# k &= ~sigma_clip(flux_binned.ravel() - A3.dot(time_model_w)).mask
k &= ~bad_targets
# No huge variability
k &= (
(np.abs(flux_binned[seg_mask] - 1) < 1).all(axis=0)[None, :]
* np.ones(flux_binned[seg_mask].shape, bool)
).ravel()
# No nans
k &= np.isfinite(flux_binned[seg_mask].ravel()) & np.isfinite(
flux_err_binned[seg_mask].ravel()
)

self.time_model_w = time_model_w
self._time_masked = k
# we solve the segment by using `seg_mask` on all `*_binned` variables
for count in [0, 1, 2]:
sigma_w_inv = A3[k].T.dot(
(
A3.multiply(1 / flux_err_binned[seg_mask].ravel()[:, None] ** 2)
).tocsr()[k]
)
sigma_w_inv += np.diag(1 / prior_sigma ** 2)
# Fit the flux - 1
B = A3[k].T.dot(
(
(flux_binned[seg_mask].ravel() - 1)
/ flux_err_binned[seg_mask].ravel() ** 2
)[k]
)
B += prior_mu / (prior_sigma ** 2)
time_model_w = np.linalg.solve(sigma_w_inv, B)
res = flux_binned[seg_mask] - A3.dot(time_model_w).reshape(
flux_binned[seg_mask].shape
)
res = np.ma.masked_array(res, (~k).reshape(flux_binned[seg_mask].shape))
bad_targets = sigma_clip(res, sigma=5).mask
bad_targets = (
np.ones(flux_binned[seg_mask].shape, bool) & bad_targets.any(axis=0)
).ravel()
# k &= ~sigma_clip(flux_binned.ravel() - A3.dot(time_model_w)).mask
k &= ~bad_targets
# we save the weights and pixel mask of each segement for later use
seg_time_model_w.append(time_model_w)
pix_mask_k.append(k)

self.seg_splits = splits
self.time_model_w = np.asarray(seg_time_model_w)
self._time_masked = np.asarray(pix_mask_k, dtype=object)
if plot:
return self.plot_time_model()
return

def plot_time_model(self):
def plot_time_model(self, segment=0):
"""
Diagnostic plot of time model.

Parameters
----------
segment : int
Which light curve segment will be plotted, default is first one.

Returns
-------
fig : matplotlib.Figure
Expand All @@ -951,15 +1019,19 @@ def plot_time_model(self):
poscorr2_smooth,
poscorr1_binned,
poscorr2_binned,
) = self._time_bin(npoints=self.n_time_points)
) = self._time_bin(
npoints=self.n_time_points, downsample=self.downsample_time_knots
)
else:
(
time_original,
time_binned,
flux_binned_raw,
flux_binned,
flux_err_binned,
) = self._time_bin(npoints=self.n_time_points)
) = self._time_bin(
npoints=self.n_time_points, downsample=self.downsample_time_knots
)

# not necessary to take value from Quantity to do .multiply()
dx, dy = (
Expand All @@ -976,27 +1048,42 @@ def plot_time_model(self):
radius=self.time_radius,
spacing=self.cartesian_knot_spacing,
)
A2 = sparse.vstack([A_c] * time_binned.shape[0], format="csr")
# Cartesian spline with time dependence
# Cartesian spline with time dependence
seg_mask = (time_binned[:, 0] >= time_original[self.seg_splits[segment]]) & (
time_binned[:, 0] < time_original[self.seg_splits[segment + 1] - 1]
)
# find the right mask that select the binned times andd flux
A2 = sparse.vstack([A_c] * time_binned[seg_mask].shape[0], format="csr")

if hasattr(self, "pos_corr1") and self.time_corrector in [
"pos_corr",
"centroid",
]:
# Cartesian spline with poscor dependence
A3 = _combine_A(A2, poscorr=[poscorr1_binned, poscorr2_binned])
A3 = _combine_A(
A2, poscorr=[poscorr1_binned[seg_mask], poscorr2_binned[seg_mask]]
)
else:
# Cartesian spline with time dependence
A3 = _combine_A(A2, time=time_binned)
A3 = _combine_A(A2, time=time_binned[seg_mask])

model = A3.dot(self.time_model_w).reshape(flux_binned.shape) + 1
model = (
A3.dot(self.time_model_w[segment]).reshape(flux_binned[seg_mask].shape) + 1
)
fig, ax = plt.subplots(2, 2, figsize=(7, 6), facecolor="w")
k1 = self._time_masked.reshape(flux_binned.shape)[0]
k2 = self._time_masked.reshape(flux_binned.shape)[-1]
k1 = (
self._time_masked[segment]
.reshape(flux_binned[seg_mask].shape)[0]
.astype(bool)
)
k2 = (
self._time_masked[segment]
.reshape(flux_binned[seg_mask].shape)[-1]
.astype(bool)
)
im = ax[0, 0].scatter(
dx[k1],
dy[k1],
c=flux_binned[0][k1],
c=flux_binned[seg_mask][0][k1],
s=3,
vmin=0.5,
vmax=1.5,
Expand All @@ -1006,7 +1093,7 @@ def plot_time_model(self):
ax[0, 1].scatter(
dx[k2],
dy[k2],
c=flux_binned[-1][k2],
c=flux_binned[seg_mask][-1][k2],
s=3,
vmin=0.5,
vmax=1.5,
Expand Down Expand Up @@ -1531,7 +1618,17 @@ def fit_model(self, fit_va=False):
(self._whitened_time[tdx] ** np.arange(4))[:, None]
* np.ones(A_cp3.shape[1] // 4)
)
X.data *= A_cp3.multiply(t_mult).dot(self.time_model_w) + 1
# we make sure to use the `time_model_w` that correspond to the segment
# we are computing
seg_num = np.where(
[
(tdx >= self.seg_splits[k]) & (tdx < self.seg_splits[k + 1])
for k in range(len(self.seg_splits) - 1)
]
)[0]
X.data *= (
A_cp3.multiply(t_mult).dot(self.time_model_w[seg_num].ravel()) + 1
)
X = X.T

sigma_w_inv = X.T.dot(
Expand Down
Loading