Skip to content
107 changes: 107 additions & 0 deletions bit_manipulation/count_distinct_primes_from_binary_string.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
/**
* @file count_distinct_primes_from_binary_string.cpp
* @brief Count distinct primes formed from binary strings using allowed operations.
*
* @author Rudraksh Tank
* @date July 2025
*
* @details
* Given a binary string, the task is to count how many distinct prime decimal numbers
* can be formed by:
* - Swapping any two characters (makes position irrelevant)
* - Changing any '1' to '0' (not the reverse)
*
* Efficient solution using bit manipulation and Sieve of Eratosthenes.
*
* Tags: Bit Manipulation, Prime Numbers, Combinatorics, Greedy, Bitmask
*/

#include <cstdint> ///< For uint32_t
#include <iostream> ///< For input/output stream handling (std::cin, std::cout)
#include <vector> ///< For dynamic array storage (std::vector)
#include <unordered_set>///< For storing distinct primes without duplicates (std::unordered_set)
#include <algorithm> ///< For algorithms like std::count
#include <cassert> ///< For assert-based testing

const uint32_t MAX = 1e6; ///< Upper bound for prime sieve
static std::vector<bool> is_prime;

/**
* @namespace bit_manipulation
* @brief Bit manipulation algorithms
*/
namespace bit_manipulation {

/**
* @brief Precomputes all prime numbers up to MAX using Sieve of Eratosthenes.
*/
void precomputePrimes() {
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Again would recommend using constexpr to do the computation at compile time

is_prime.assign(MAX + 1, true);
is_prime[0] = is_prime[1] = false;
for (uint32_t i = 2; i * i <= MAX; i++) {
if (is_prime[i]) {
for (uint32_t j = i * i; j <= MAX; j += i) {
is_prime[j] = false;
}
}
}
}

int popcount(uint32_t x) {
int count = 0;
while (x) {
count += x & 1;
x >>= 1;
}
return count;
}
/**
* @brief Counts distinct prime numbers that can be formed from the given binary string.
* @param s Binary string input
* @return Number of distinct primes possible after allowed transformations
*/
int countPrimeBinaryStrings(const std::string &s) {
int n = s.length();
int k = std::count(s.begin(), s.end(), '1');
int cnt = 0;
int limit = 1 << n;

std::unordered_set<int> seen;

for (uint32_t i = 2; i < limit; i++) {
if (popcount(i) <= k && is_prime[i]) {
if (!seen.count(i)) {
cnt++;
seen.insert(i);
}
}
}

return cnt;
}

} // namespace bit_manipulation

/**
* @brief Static test function using assertions instead of I/O.
*/
static void tests() {
using namespace bit_manipulation;

precomputePrimes();

// Example test cases
assert(countPrimeBinaryStrings("1") == 0); // Only "1" -> not prime
assert(countPrimeBinaryStrings("11") == 2); // Should form primes like 3
assert(countPrimeBinaryStrings("101") == 3); // Can form primes like 5
assert(countPrimeBinaryStrings("000") == 0); // No 1s -> no primes possible
}

/**
* @brief Main function to run tests.
* @returns 0 on successful exit
*/
int main() {
tests();
return 0;
}