Skip to content

a0a7/fastgeotoolkit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

fastgeotoolkit npm Docs Demo

Rust Tests JavaScript Tests CodeQL License

fastgeotoolkit is a library for GPS data processing and route density mapping. The core of the library is written in Rust and it's compiled to webassembly for use in the browser and node.

Note

Only Javascript/Typescript is supported at the moment. Rust and Python releases are planned.

What it does

The main use case is creating route heatmaps where you want to see which paths/routes are used most frequently. You can test this functionality at https://fastgeotoolkit-demo.pages.dev/, using either your own data or sample data. This is an example of what a heatmap produced using fastgeotoolkit looks like: https://i.ibb.co/MxpHbVdp/image.png

However, beyond this primary usecase, this library helps you:

  • Analyze GPS tracks (distance, statistics, intersections)
  • Decode Google polylines
  • Convert between GPS data formats

Documentation

Docs are available at https://fastgeotoolkit.pages.dev/.

Installation

npm install fastgeotoolkit
# or 
pnpm i fastgeotoolkit

Basic Usage

import { processGpxFiles } from 'fastgeotoolkit';

// Process GPX files into a heatmap
const gpxFile1 = new Uint8Array(/* your GPX file data */);
const gpxFile2 = new Uint8Array(/* another GPX file */);

const result = await processGpxFiles([gpxFile1, gpxFile2]);

// Result contains tracks with frequency data
console.log(`Found ${result.tracks.length} unique track segments`);
console.log(`Maximum frequency: ${result.max_frequency}`);

result.tracks.forEach(track => {
  console.log(`Track with ${track.coordinates.length} points, used ${track.frequency} times`);
});

Working with Polylines

import { decodePolyline, processPolylines } from 'fastgeotoolkit';

// Decode a single polyline
const coords = await decodePolyline('_p~iF~ps|U_ulLnnqC_mqNvxq`@');
console.log(coords); // [[lat, lng], [lat, lng], ...]

// Process multiple polylines into a heatmap
const polylines = [
  '_p~iF~ps|U_ulLnnqC_mqNvxq`@',
  'another_encoded_polyline',
  'yet_another_one'
];
const heatmap = await processPolylines(polylines);

Track Analysis

import { calculateTrackStatistics, validateCoordinates } from 'fastgeotoolkit';

const coordinates = [[37.7749, -122.4194], [37.7849, -122.4094]]; // [lat, lng] pairs

// Get basic statistics
const stats = await calculateTrackStatistics(coordinates);
console.log(`Distance: ${stats.distance_km.toFixed(2)} km`);
console.log(`${stats.point_count} GPS points`);
console.log(`Bounds: ${stats.bounding_box}`); // [min_lat, min_lng, max_lat, max_lng]

// Validate coordinates
const validation = await validateCoordinates(coordinates);
console.log(`${validation.valid_count} out of ${validation.total_count} coordinates are valid`);
if (validation.issues.length > 0) {
  console.log('Issues found:', validation.issues);
}

Data Conversion

import { coordinatesToGeojson, exportToGpx } from 'fastgeotoolkit';

// Convert to GeoJSON
const geojson = await coordinatesToGeojson(coordinates, {
  name: 'My Route',
  activity: 'cycling'
});

// Export multiple tracks as GPX
const tracks = [track1_coordinates, track2_coordinates];
const gpxString = await exportToGpx(tracks, {
  creator: 'My App',
  name: 'Route Collection'
});

Real-world Example

Here's an example of how you might use this in a web app to show route popularity:

import { processGpxFiles } from 'fastgeotoolkit';

async function createHeatmap(gpxFiles) {
  // Convert files to Uint8Array
  const fileBuffers = await Promise.all(
    gpxFiles.map(file => file.arrayBuffer().then(buf => new Uint8Array(buf)))
  );
  
  // Process into heatmap
  const heatmap = await processGpxFiles(fileBuffers);
  
  // Render on map (example with any mapping library)
  heatmap.tracks.forEach(track => {
    const intensity = track.frequency / heatmap.max_frequency;
    const color = `hsl(${(1-intensity) * 240}, 100%, 50%)`; // blue to red
    
    drawLineOnMap(track.coordinates, {
      color: color,
      weight: Math.max(2, intensity * 8)
    });
  });
}

// Usage
document.getElementById('file-input').addEventListener('change', async (e) => {
  const files = Array.from(e.target.files);
  await createHeatmap(files);
});

TypeScript Support

The library includes full TypeScript definitions:

import type { 
  Coordinate,        // [number, number] - [lat, lng]
  HeatmapResult,     // { tracks: HeatmapTrack[], max_frequency: number }
  HeatmapTrack,      // { coordinates: Coordinate[], frequency: number }
  TrackStatistics,   // distance, bounds, point count, etc.
  ValidationResult,  // validation results with issues
  FileInfo          // file format information
} from 'fastgeotoolkit';

JavaScript Utilities

For simple operations that don't rely on WebAssembly:

import { utils } from 'fastgeotoolkit';

// Basic coordinate validation
if (utils.isValidCoordinate(37.7749, -122.4194)) {
  console.log('Valid GPS coordinate');
}

// Calculate distance between two points
const distance = utils.haversineDistance(37.7749, -122.4194, 37.7849, -122.4094);
console.log(`Distance: ${distance.toFixed(2)} km`);

// Get bounding box
const bounds = utils.getBoundingBox(coordinates);
console.log(`Bounds: ${bounds}`); // [min_lat, min_lng, max_lat, max_lng]

Browser vs Node.js

Works the same in both environments:

// Browser
import { processGpxFiles } from 'fastgeotoolkit';

// Node.js  
const { processGpxFiles } = require('fastgeotoolkit');
// or with ES modules:
import { processGpxFiles } from 'fastgeotoolkit';

Performance Notes

  • WebAssembly provides near-native performance for GPS processing
  • Large datasets (thousands of tracks) process quickly
  • First function call initializes WebAssembly (adds ~100ms startup time)

Common Issues

"Cannot resolve module" errors: Make sure your bundler supports WebAssembly. Modern bundlers (Vite, Webpack 5+, etc.) work out of the box.

TypeScript errors: Ensure you're using TypeScript 4.0+ for proper WebAssembly typing support.

File reading: Remember to convert File objects to Uint8Array:

const buffer = await file.arrayBuffer();
const uint8Array = new Uint8Array(buffer);

Development & Maintenance

This project consists of Rust code compiled to WebAssembly with JavaScript/TypeScript bindings.

Project Structure

  • /src/ - Rust source code
  • /dist/javascript/ - JavaScript/TypeScript bindings and NPM package
  • /dist/wasm/ - Generated WebAssembly files
  • /demo/ - Demo application (SvelteKit)
  • /docs/ - Generated documentation

Note

/dist/python and /dist/rust/ contain WIP releases for their respective ecosystems, but they're not in working order yet.

Compiling Rust to WebAssembly

To compile the Rust code to WebAssembly:

# Install wasm-pack if you haven't already
cargo install wasm-pack

# Build the WebAssembly module
wasm-pack build --target web --out-dir dist/wasm

Building the NPM Package

To build the complete NPM package with all bindings:

# From the root directory
npm run build

# Or build individual components:
npm run build:wasm    # Build WebAssembly
npm run build:js      # Build JavaScript bindings
npm run build:docs    # Build documentation

Building Documentation

The documentation is generated using TypeDoc and can be built locally:

cd dist/javascript
npm run docs

This will generate the documentation website in the docs/ directory.

Testing

# Run Rust tests
cargo test

# Run JavaScript tests
cd dist/javascript
npm test

License

MIT