Skip to content

Implement gradient #11

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 62 additions & 18 deletions src/reverse_mode.jl
Original file line number Diff line number Diff line change
Expand Up @@ -335,27 +335,71 @@ Reverse-mode evaluation of an expression tree given in `f`.
* This function assumes that `f.reverse_storage` has been initialized with 0.0.
"""
function _reverse_eval(f::_SubexpressionStorage)
@assert length(f.reverse_storage) >= length(f.nodes)
@assert length(f.partials_storage) >= length(f.nodes)
@assert length(f.reverse_storage) >= _length(f.sizes)
@assert length(f.partials_storage) >= _length(f.sizes)
# f.nodes is already in order such that parents always appear before
# children so a forward pass through nodes is a backwards pass through the
# tree.
f.reverse_storage[1] = one(Float64)
for k in 2:length(f.nodes)
children_arr = SparseArrays.rowvals(f.adj)
for i in _storage_range(f.sizes, 1)
f.reverse_storage[i] = one(Float64)
end
for k in 1:length(f.nodes)
@show f.reverse_storage
node = f.nodes[k]
if node.type == Nonlinear.NODE_VALUE ||
node.type == Nonlinear.NODE_LOGIC ||
node.type == Nonlinear.NODE_COMPARISON ||
node.type == Nonlinear.NODE_PARAMETER
children_indices = SparseArrays.nzrange(f.adj, k)
if node.type == MOI.Nonlinear.NODE_CALL_MULTIVARIATE
if node.index in
eachindex(MOI.Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS)
op = MOI.Nonlinear.DEFAULT_MULTIVARIATE_OPERATORS[node.index]
if op == :vect
@assert _eachindex(f.sizes, k) == eachindex(children_indices)
for j in eachindex(children_indices)
rev_parent = @s f.reverse_storage[k]
ix = children_arr[children_indices[j]]
# partial is 1 so we can ignore it
@s f.reverse_storage[ix] = rev_parent
end
continue
elseif op == :dot
# Node `k` is scalar, the jacobian w.r.t. each vectorized input
# child is a row vector whose entries are stored in `f.partials_storage`
rev_parent = @s f.reverse_storage[k]
for j in _eachindex(f.sizes, k)
for child_idx in children_indices
ix = children_arr[child_idx]
partial = @j f.partials_storage[ix]
val = ifelse(
rev_parent == 0.0 && !isfinite(partial),
rev_parent,
rev_parent * partial,
)
@j f.reverse_storage[ix] = val
end
end
continue
end
end
elseif node.type != MOI.Nonlinear.NODE_CALL_UNIVARIATE
continue
end
rev_parent = f.reverse_storage[node.parent]
partial = f.partials_storage[k]
f.reverse_storage[k] = ifelse(
rev_parent == 0.0 && !isfinite(partial),
rev_parent,
rev_parent * partial,
)
# Node `k` has same size as its children.
# The Jacobian (between the vectorized versions) is diagonal and the diagonal entries
# are stored in `f.partials_storage`
for j in _eachindex(f.sizes, k)
rev_parent = @j f.reverse_storage[k]
for child_idx in children_indices
ix = children_arr[child_idx]
@assert _size(f.sizes, k) == _size(f.sizes, ix)
partial = @j f.partials_storage[ix]
val = ifelse(
rev_parent == 0.0 && !isfinite(partial),
rev_parent,
rev_parent * partial,
)
@j f.reverse_storage[ix] = val
end
end
end
return
end
Expand Down Expand Up @@ -406,12 +450,12 @@ function _extract_reverse_pass_inner(
subexpressions::AbstractVector{T},
scale::T,
) where {T}
@assert length(f.reverse_storage) >= length(f.nodes)
@assert length(f.reverse_storage) >= _length(f.sizes)
for (k, node) in enumerate(f.nodes)
if node.type == Nonlinear.NODE_VARIABLE
output[node.index] += scale * f.reverse_storage[k]
output[node.index] += scale * @s f.reverse_storage[k]
elseif node.type == Nonlinear.NODE_SUBEXPRESSION
subexpressions[node.index] += scale * f.reverse_storage[k]
subexpressions[node.index] += scale * @s f.reverse_storage[k]
end
end
return
Expand Down
17 changes: 12 additions & 5 deletions test/ArrayDiff.jl
Original file line number Diff line number Diff line change
Expand Up @@ -32,28 +32,35 @@ function test_objective_dot_univariate()
@test sizes.size_offset == [0, 1, 0, 0, 0]
@test sizes.size == [1, 1]
@test sizes.storage_offset == [0, 1, 2, 3, 4, 5]
@test MOI.eval_objective(evaluator, [1.2]) == 1.2^2
x = [1.2]
@test MOI.eval_objective(evaluator, x) == x[1]^2
g = ones(1)
MOI.eval_objective_gradient(evaluator, g, x)
@test g[1] == 2x[1]
return
end

function test_objective_dot_bivariate()
model = Nonlinear.Model()
x = MOI.VariableIndex(1)
y = MOI.VariableIndex(1)
y = MOI.VariableIndex(2)
Nonlinear.set_objective(
model,
:(dot([$x, $y] - [1, 2], -[1, 2] + [$x, $y])),
)
evaluator = Nonlinear.Evaluator(model, ArrayDiff.Mode(), [x])
evaluator = Nonlinear.Evaluator(model, ArrayDiff.Mode(), [x, y])
MOI.initialize(evaluator, [:Grad])
sizes = evaluator.backend.objective.expr.sizes
@test sizes.ndims == [0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0]
@test sizes.size_offset == [0, 6, 5, 0, 0, 4, 0, 0, 3, 2, 1, 0, 0, 0, 0, 0]
@test sizes.size == [2, 2, 2, 2, 2, 2, 2]
@test sizes.storage_offset ==
[0, 1, 3, 5, 6, 7, 9, 10, 11, 13, 15, 17, 18, 19, 21, 22, 23]
g = [NaN]
@test MOI.eval_objective(evaluator, [5, -1]) ≈ 25
x = [5, -1]
@test MOI.eval_objective(evaluator, x) ≈ 25
g = ones(2)
MOI.eval_objective_gradient(evaluator, g, x)
@test g == 2(x - [1, 2])
return
end

Expand Down
Loading