Skip to content

code-refactor/memory_profiler_tool_embedded_engineer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Memory Profiler Tool for Embedded Systems

A lightweight memory profiling toolkit specifically designed for embedded systems engineers running Python on resource-constrained devices. This tool provides byte-level precision tracking, static analysis, fragmentation visualization, and cross-platform memory prediction.

Features

1. Micro-allocation Tracking

  • Track every memory allocation down to individual bytes
  • Microsecond-precision timestamps
  • Full stack traces for allocation sources
  • Size class categorization (tiny, small, medium, large)
  • Real-time allocation event streaming

2. Static Memory Analysis

  • Pre-deployment memory usage estimation
  • Code path analysis
  • Memory hotspot detection
  • Device constraint validation
  • Bytecode analysis for memory prediction

3. Memory Fragmentation Analysis

  • Text-based memory visualization
  • Fragmentation percentage calculation
  • Free block distribution tracking
  • Defragmentation strategy suggestions
  • Memory layout visualization

4. Memory Optimization Recommendations

  • Data structure optimization suggestions
  • Object pooling candidates identification
  • Algorithm efficiency recommendations
  • Redundancy detection
  • Implementation effort estimation

5. Cross-Platform Memory Prediction

  • Support for ARM32/64, x86/64, ESP32, STM32, AVR
  • Platform-specific memory modeling
  • Alignment requirement calculations
  • Memory overhead predictions
  • Cross-platform comparison reports

Installation

pip install -r requirements.txt

Usage Examples

Micro-allocation Tracking

from src.micro_tracker import MicroTracker

# Track allocations in your code
with MicroTracker() as tracker:
    # Your code here
    data = [i for i in range(1000)]
    cache = {'key': 'value'}
    
    # Get allocation statistics
    stats = tracker.get_stats()
    print(f"Total allocations: {stats.total_count}")
    print(f"Current memory: {stats.current_memory} bytes")
    print(f"Peak memory: {stats.peak_memory} bytes")
    
    # Stream real-time allocations
    tracker.stream_allocations()

Static Analysis

from src.static_analyzer import StaticAnalyzer
from pathlib import Path

# Analyze before deployment
analyzer = StaticAnalyzer(device_memory_limit=256*1024)  # 256KB limit
report = analyzer.analyze_file(Path("your_code.py"))

print(f"Estimated memory: {report.total_estimate.average_bytes} bytes")
print(f"Memory hotspots: {report.memory_hotspots}")
print(f"Recommendations: {report.recommendations}")

Fragmentation Analysis

from src.fragmentation import FragmentationAnalyzer

# Analyze memory fragmentation
analyzer = FragmentationAnalyzer(memory_size=64*1024)  # 64KB

# Simulate allocations
allocations = [
    (1024, "buffer"),
    (512, "cache"),
    (2048, "data"),
]

report = analyzer.analyze_allocation_pattern(allocations)
print(report.visualization)
print(f"Fragmentation: {report.metrics.fragmentation_percentage}%")

Memory Optimization

from src.optimizer import MemoryOptimizer

# Get optimization suggestions
optimizer = MemoryOptimizer()
report = optimizer.analyze_file(Path("your_code.py"))

for suggestion in report.suggestions:
    print(f"Priority {suggestion.priority}: {suggestion.suggested_approach}")
    print(f"Estimated savings: {suggestion.estimated_savings} bytes")
    print(f"Effort: {suggestion.implementation_effort}")

Cross-Platform Prediction

from src.cross_platform import CrossPlatformPredictor, Architecture

# Predict memory usage across platforms
predictor = CrossPlatformPredictor()

allocations = [
    ("sensor_data", 4096),
    ("message_buffer", 1024),
    ("state_machine", 512),
]

report = predictor.predict_memory(
    allocations, 
    [Architecture.ESP32, Architecture.STM32, Architecture.AVR]
)

for arch, prediction in report.predictions.items():
    print(f"{arch.value}: {prediction.peak_memory} bytes")
    if prediction.warnings:
        print(f"  Warnings: {prediction.warnings}")

Running Tests

To run all tests and generate the JSON report:

pytest --json-report --json-report-file=pytest_results.json

To run specific test modules:

pytest tests/test_micro_tracker.py -v
pytest tests/test_static_analyzer.py -v
pytest tests/test_fragmentation.py -v
pytest tests/test_optimizer.py -v
pytest tests/test_cross_platform.py -v

Project Structure

memory_profiler_tool_embedded_engineer/
├── src/
│   ├── __init__.py
│   ├── micro_tracker.py      # Byte-level allocation tracking
│   ├── static_analyzer.py    # Pre-deployment analysis
│   ├── fragmentation.py      # Fragmentation metrics
│   ├── optimizer.py          # Optimization recommendations
│   └── cross_platform.py     # Cross-compilation prediction
├── tests/
│   ├── __init__.py
│   ├── test_micro_tracker.py
│   ├── test_static_analyzer.py
│   ├── test_fragmentation.py
│   ├── test_optimizer.py
│   └── test_cross_platform.py
├── requirements.txt
└── README.md

Design Considerations

This tool is designed with embedded systems constraints in mind:

  • Minimal overhead: The profiler itself uses minimal memory
  • No external dependencies: Pure Python implementation
  • Text-based output: No GUI components, suitable for embedded environments
  • Byte-level precision: Critical for memory-constrained devices
  • Platform awareness: Understands different embedded architectures

Best Practices

  1. Pre-deployment Analysis: Always run static analysis before deploying to embedded devices
  2. Regular Profiling: Profile during development to catch memory issues early
  3. Platform Testing: Test memory usage predictions against actual device measurements
  4. Fragmentation Monitoring: Check fragmentation patterns in long-running applications
  5. Optimization Priority: Focus on high-priority, low-effort optimizations first

Limitations

  • Dynamic memory tracking requires the Python garbage collector
  • Static analysis provides estimates, not guarantees
  • Platform predictions are based on heuristics and may vary from actual usage
  • Some Python internals may not be fully tracked

Contributing

When contributing to this project:

  1. Ensure all tests pass
  2. Add tests for new features
  3. Keep embedded constraints in mind
  4. Document memory overhead of new features
  5. Test on multiple platforms when possible

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages