Skip to content

code-refactor/memory_profiler_tool_game_developer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyMemTrace - Memory Profiler for Game Development

PyMemTrace is a specialized memory profiling tool designed for game developers working with Python game engines. It provides real-time memory tracking during gameplay, asset lifecycle management, and performance optimization to ensure smooth gaming experiences without memory-related stutters or crashes.

Features

1. Frame Memory Profiler

  • Per-frame memory tracking: Monitor memory allocation/deallocation for each game frame
  • Spike detection: Automatically detect and alert on memory spikes
  • Frame drop correlation: Identify memory-related frame drops
  • Minimal overhead: Less than 0.5ms per frame profiling overhead

2. Asset Memory Manager

  • Lifecycle tracking: Monitor assets from load to unload
  • Memory heatmaps: Visualize memory usage by asset type
  • Leak detection: Identify orphaned assets and circular dependencies
  • Reference counting: Track asset usage across game systems

3. Object Pool Analyzer

  • Pool efficiency metrics: Measure allocation savings and GC impact
  • Automatic sizing: Get pool size recommendations based on usage patterns
  • Allocation pattern analysis: Understand object allocation behavior
  • Cross-pool comparison: Compare efficiency across different pools

4. Memory Budget System

  • Hierarchical budgets: Create parent-child budget relationships
  • Automatic eviction: Configurable strategies (LRU, LFU, Priority, Size, Age, Hybrid)
  • Violation alerts: Get notified when approaching or exceeding limits
  • Platform-aware: Respect platform-specific memory constraints

5. Platform Memory Monitor

  • Multi-platform support: PC (Windows/Linux/Mac), Mobile (iOS/Android), Consoles, Web
  • Platform-specific recommendations: Get optimization suggestions for each platform
  • Memory bank management: Console-specific memory bank tracking
  • Compatibility estimation: Check if your game fits on different platforms

Installation

# Create virtual environment
uv venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install the package
uv pip install -e .

Usage Examples

Basic Frame Profiling

from pymemtrace import FrameMemoryProfiler

# Initialize profiler
profiler = FrameMemoryProfiler(max_frame_history=1000, spike_threshold=0.1)
profiler.start_profiling()

# Profile game frames
for frame_num in range(100):
    with profiler.frame():
        # Your game frame logic here
        render_scene()
        update_physics()
        process_input()

# Get frame statistics
stats = profiler.get_frame_stats()
print(f"Frame {stats.frame_number}: {stats.frame_duration*1000:.2f}ms, {stats.peak_memory/1024/1024:.1f}MB")

# Detect frame drops
dropped = profiler.detect_frame_drops(target_fps=60)
print(f"Dropped frames: {dropped}")

Asset Memory Management

from pymemtrace import AssetMemoryManager
from pymemtrace.asset_manager import AssetType

# Initialize manager
asset_manager = AssetMemoryManager()

# Register game assets
texture_data = load_texture("player.png")
asset_manager.register_asset(
    asset_id="player_texture",
    asset_type=AssetType.TEXTURE,
    asset_object=texture_data,
    metadata={"width": 1024, "height": 1024, "format": "RGBA"}
)

# Track asset lifecycle
asset_manager.update_asset_state("player_texture", AssetState.IN_USE)

# Get memory heatmap
heatmap = asset_manager.get_memory_heatmap(top_n=10)
print(f"Total asset memory: {heatmap.total_memory/1024/1024:.1f}MB")
print(f"Top memory users: {heatmap.hotspots}")

# Detect memory leaks
leaks = asset_manager.detect_memory_leaks()
if leaks:
    print(f"Potential memory leaks detected: {leaks}")

Object Pooling

from pymemtrace import ObjectPoolAnalyzer

# Create analyzer
analyzer = ObjectPoolAnalyzer()

# Create pools for game objects
particle_pool = analyzer.create_pool(
    Particle,
    initial_size=100,
    max_size=500,
    name="ParticlePool"
)

enemy_pool = analyzer.create_pool(
    Enemy,
    initial_size=20,
    max_size=50,
    name="EnemyPool"
)

# Use pools in game loop
for _ in range(10):
    particle = particle_pool.acquire()
    # Use particle
    particle_pool.release(particle)

# Analyze efficiency
efficiency = analyzer.analyze_efficiency("ParticlePool")
print(f"Allocation reduction: {efficiency['allocation_reduction']:.1%}")
print(f"GC impact reduction: {efficiency['gc_impact_reduction']:.2f}")

# Get pool size suggestions
suggestion = analyzer.suggest_pool_size("ParticlePool")
print(f"Suggested pool size: {suggestion['suggested_size']} (current: {suggestion['current_size']})")

Memory Budget Management

from pymemtrace import MemoryBudgetSystem
from pymemtrace.budget_system import EvictionStrategy

# Initialize budget system
budget_system = MemoryBudgetSystem()
budget_system.set_eviction_strategy(EvictionStrategy.HYBRID)

# Create hierarchical budgets
budget_system.create_budget("total_game", max_bytes=512*1024*1024)  # 512MB
budget_system.create_budget("graphics", max_bytes=256*1024*1024, parent="total_game")
budget_system.create_budget("audio", max_bytes=128*1024*1024, parent="total_game")
budget_system.create_budget("gameplay", max_bytes=128*1024*1024, parent="total_game")

# Register assets with budgets
budget_system.register_asset("level_texture", "graphics", size=50*1024*1024, priority=10)
budget_system.register_asset("bg_music", "audio", size=20*1024*1024, priority=5)

# Add violation callback
def on_budget_violation(violation):
    print(f"Budget violation: {violation.budget_name} - {violation.message}")

budget_system.add_violation_callback(on_budget_violation)

# Get budget status
status = budget_system.get_budget_status("graphics")
print(f"Graphics budget: {status['usage_percentage']:.1f}% used")

Platform-Specific Monitoring

from pymemtrace import PlatformMemoryMonitor

# Initialize monitor
monitor = PlatformMemoryMonitor()

# Get current platform status
status = monitor.get_current_status()
print(f"Platform: {status.platform.value}")
print(f"Memory usage: {status.memory_percentage:.1f}%")
print(f"Critical: {status.is_critical}")

# Get platform-specific recommendations
if status.recommendations:
    print("Recommendations:")
    for rec in status.recommendations:
        print(f"  - {rec}")

# Check compatibility with other platforms
compatibility = monitor.estimate_platform_compatibility(status.process_memory)
for platform, compat in compatibility.items():
    if not compat["meets_recommended"]:
        print(f"{platform}: Optimization needed")

# Get optimization guide
guide = monitor.get_platform_optimization_guide()
print(f"Recommended texture formats: {guide['texture_formats']}")
print(f"Memory techniques: {guide['memory_techniques']}")

Running Tests

# Install test dependencies
uv pip install pytest pytest-json-report

# Run all tests with JSON report
pytest --json-report --json-report-file=pytest_results.json

# Run specific test module
pytest tests/test_frame_profiler.py -v

# Run with coverage
pytest --cov=pymemtrace --cov-report=html

Performance Considerations

  • Frame profiling overhead: < 0.5ms per frame at 60 FPS
  • Asset tracking: Supports 10,000+ game objects efficiently
  • Pool monitoring: < 0.1ms overhead per allocation
  • Memory snapshots: < 5ms generation time
  • Platform monitoring: Minimal impact with 1-second update intervals

Best Practices

  1. Start profiling early: Enable profiling during development to catch issues early
  2. Set appropriate budgets: Use platform-specific memory limits as guidelines
  3. Monitor frame drops: Correlate memory spikes with performance issues
  4. Use object pooling: Especially for frequently created/destroyed objects
  5. Regular leak checks: Run leak detection after major gameplay sessions
  6. Platform testing: Test on target platforms with their specific constraints

License

This project is part of PyMemTrace for game development optimization.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages