Skip to content

Conversation

@codeflash-ai
Copy link

@codeflash-ai codeflash-ai bot commented Nov 7, 2025

📄 40% (0.40x) speedup for JiraDataSource.get_component in backend/python/app/sources/external/jira/jira.py

⏱️ Runtime : 2.75 milliseconds 1.97 milliseconds (best of 250 runs)

📝 Explanation and details

The optimized code achieves a 39% runtime improvement and 10.1% throughput increase through targeted micro-optimizations that eliminate unnecessary allocations and computations in hot code paths.

Key Optimizations Applied:

1. Fast-path URL formatting: The _safe_format_url function now checks for the common case of /rest/api/3/component/{id} and uses direct string replacement instead of the expensive format_map operation. This reduces URL formatting time from ~423μs to ~209μs per call.

2. Optimized dictionary conversions: The _as_str_dict function now has fast-paths for:

  • Empty dictionaries (immediate return of {})
  • Single-key dictionaries (direct conversion without iteration)
  • This eliminates unnecessary dict comprehension overhead for common cases

3. Reduced allocations:

  • Headers use conditional assignment (headers if headers else {}) instead of dict(headers or {})
  • Path params bypass _as_str_dict entirely with inline {'id': str(id)} for the single-key case
  • These changes reduce object allocation overhead

4. HTTP client optimization: Added a conditional check to avoid redundant format operations when path_params is empty, reducing string formatting overhead.

Performance Impact:

The line profiler shows dramatic improvements in the hottest functions:

  • _safe_format_url: 55% reduction in execution time (759μs → 318μs total)
  • _as_str_dict: 78% reduction in execution time (1.77ms → 381μs total)
  • Overall get_component: 33% reduction (11.1ms → 7.4ms total)

Test Case Benefits:

The optimizations particularly benefit:

  • High-frequency API calls (throughput tests with 25-100 concurrent requests)
  • Simple ID-based requests (most common use case with single path parameter)
  • Scenarios with empty/minimal headers (fast-path empty dict handling)

These micro-optimizations compound significantly in high-throughput scenarios where get_component is called repeatedly, making this particularly valuable for API-intensive Jira integrations.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 444 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage 90.9%
🌀 Generated Regression Tests and Runtime
import asyncio  # used to run async functions

import pytest  # used for our unit tests
from app.sources.external.jira.jira import JiraDataSource

# --- Minimal stubs for dependencies so tests are self-contained and deterministic ---

# Minimal HTTPResponse stub for testing
class HTTPResponse:
    def __init__(self, data):
        self.data = data

# Minimal HTTPRequest stub for testing
class HTTPRequest:
    def __init__(self, method, url, headers, path_params, query_params, body):
        self.method = method
        self.url = url
        self.headers = headers
        self.path_params = path_params
        self.query_params = query_params
        self.body = body

# Minimal JiraRESTClientViaUsernamePassword stub for testing
class JiraRESTClientViaUsernamePassword:
    def __init__(self, base_url: str, username: str, password: str, token_type: str = "Basic") -> None:
        self.base_url = base_url
        self.username = username
        self.password = password
        self.token_type = token_type

    def get_base_url(self) -> str:
        return self.base_url

    async def execute(self, req: HTTPRequest):
        # Simulate a successful response based on the input URL and params
        # For edge case testing, we can look at req.path_params['id'] or req.headers
        return HTTPResponse({
            "url": req.url,
            "method": req.method,
            "headers": req.headers,
            "path_params": req.path_params,
            "query_params": req.query_params,
            "body": req.body,
        })

# Minimal JiraClient stub for testing
class JiraClient:
    def __init__(self, client):
        self.client = client

    def get_client(self):
        return self.client
from app.sources.external.jira.jira import JiraDataSource

# --- Basic Test Cases ---

@pytest.mark.asyncio
async def test_get_component_basic_returns_expected_response():
    """Test basic async/await behavior and expected output."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("123")

@pytest.mark.asyncio
async def test_get_component_basic_with_headers():
    """Test passing custom headers."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    headers = {"X-Test-Header": "testval"}
    resp = await ds.get_component("456", headers=headers)

# --- Edge Test Cases ---

@pytest.mark.asyncio
async def test_get_component_with_empty_id():
    """Test edge case where id is empty string."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("")

@pytest.mark.asyncio
async def test_get_component_with_special_characters_in_id():
    """Test edge case with special characters in id."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    special_id = "a/b?c=d&e"
    resp = await ds.get_component(special_id)

@pytest.mark.asyncio
async def test_get_component_with_none_headers():
    """Test passing headers as None (should default to empty dict)."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("789", headers=None)

@pytest.mark.asyncio
async def test_get_component_concurrent_execution():
    """Test concurrent execution of multiple get_component calls."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    ids = ["1", "2", "3", "4", "5"]
    tasks = [ds.get_component(i) for i in ids]
    results = await asyncio.gather(*tasks)
    # Each response should correspond to the correct id
    for idx, resp in enumerate(results):
        pass

@pytest.mark.asyncio
async def test_get_component_raises_if_client_is_none():
    """Test that ValueError is raised if HTTP client is not initialized."""
    class DummyClient:
        def get_client(self):
            return None
    with pytest.raises(ValueError, match="HTTP client is not initialized"):
        JiraDataSource(DummyClient())

@pytest.mark.asyncio
async def test_get_component_raises_if_client_missing_get_base_url():
    """Test that ValueError is raised if get_base_url method is missing."""
    class DummyClient:
        def get_client(self):
            return object()  # no get_base_url method
    with pytest.raises(ValueError, match="HTTP client does not have get_base_url method"):
        JiraDataSource(DummyClient())

# --- Large Scale Test Cases ---

@pytest.mark.asyncio
async def test_get_component_large_scale_concurrent():
    """Test large scale concurrent execution (up to 50 calls)."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [str(i) for i in range(50)]
    tasks = [ds.get_component(i) for i in ids]
    results = await asyncio.gather(*tasks)
    for idx, resp in enumerate(results):
        pass

@pytest.mark.asyncio
async def test_get_component_large_scale_with_varied_headers():
    """Test large scale concurrent execution with varied headers."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [str(i) for i in range(10)]
    tasks = [
        ds.get_component(i, headers={"X-Req": f"val{i}"}) for i in ids
    ]
    results = await asyncio.gather(*tasks)
    for idx, resp in enumerate(results):
        pass

# --- Throughput Test Cases ---

@pytest.mark.asyncio
async def test_get_component_throughput_small_load():
    """Throughput test: small load (5 requests)."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [str(i) for i in range(5)]
    tasks = [ds.get_component(i) for i in ids]
    results = await asyncio.gather(*tasks)
    for idx, resp in enumerate(results):
        pass

@pytest.mark.asyncio
async def test_get_component_throughput_medium_load():
    """Throughput test: medium load (25 requests)."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [str(i) for i in range(25)]
    tasks = [ds.get_component(i) for i in ids]
    results = await asyncio.gather(*tasks)
    for idx, resp in enumerate(results):
        pass

@pytest.mark.asyncio
async def test_get_component_throughput_large_load():
    """Throughput test: large load (100 requests)."""
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com/", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [str(i) for i in range(100)]
    tasks = [ds.get_component(i) for i in ids]
    results = await asyncio.gather(*tasks)
    # Check a few random responses for correctness
    for idx in [0, 50, 99]:
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.
#------------------------------------------------
import asyncio  # used to run async functions

import pytest  # used for our unit tests
from app.sources.external.jira.jira import JiraDataSource


# Minimal stubs for required classes and helpers
class HTTPRequest:
    def __init__(self, method, url, headers, path_params, query_params, body):
        self.method = method
        self.url = url
        self.headers = headers
        self.path_params = path_params
        self.query_params = query_params
        self.body = body

class HTTPResponse:
    def __init__(self, response):
        self._response = response

    @property
    def status_code(self):
        return getattr(self._response, "status_code", None)

    @property
    def json(self):
        return getattr(self._response, "json", lambda: {})()

    @property
    def text(self):
        return getattr(self._response, "text", "")

# Minimal JiraRESTClientViaUsernamePassword stub
class JiraRESTClientViaUsernamePassword:
    def __init__(self, base_url: str, username: str, password: str, token_type: str = "Basic") -> None:
        self.base_url = base_url

    def get_base_url(self) -> str:
        return self.base_url

    async def execute(self, request: HTTPRequest):
        # Simulate a successful HTTPResponse
        class DummyResponse:
            status_code = 200
            def json(self):
                return {"id": request.path_params.get("id"), "name": "ComponentName"}
            text = '{"id": "%s", "name": "ComponentName"}' % request.path_params.get("id")
        return HTTPResponse(DummyResponse())

class JiraClient:
    def __init__(self, client):
        self.client = client
    def get_client(self):
        return self.client
from app.sources.external.jira.jira import JiraDataSource

# ------------------------ UNIT TESTS ------------------------

@pytest.mark.asyncio
async def test_get_component_basic_returns_expected_response():
    # Basic test: function returns expected response for valid input
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("123")

@pytest.mark.asyncio
async def test_get_component_basic_with_headers():
    # Basic test: function returns expected response when custom headers are provided
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    headers = {"X-Test-Header": "value"}
    resp = await ds.get_component("456", headers=headers)

@pytest.mark.asyncio
async def test_get_component_basic_empty_headers():
    # Basic test: function works with empty headers
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("789", headers={})

@pytest.mark.asyncio
async def test_get_component_edge_invalid_client_none():
    # Edge case: JiraClient returns None, should raise ValueError
    class DummyClient:
        def get_client(self):
            return None
    with pytest.raises(ValueError, match="HTTP client is not initialized"):
        JiraDataSource(DummyClient())

@pytest.mark.asyncio
async def test_get_component_edge_missing_get_base_url():
    # Edge case: JiraClient returns object missing get_base_url, should raise ValueError
    class NoBaseUrlClient:
        pass
    class DummyClient:
        def get_client(self):
            return NoBaseUrlClient()
    with pytest.raises(ValueError, match="HTTP client does not have get_base_url method"):
        JiraDataSource(DummyClient())

@pytest.mark.asyncio
async def test_get_component_edge_concurrent_execution():
    # Edge case: concurrent execution with different IDs
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    ids = ["a", "b", "c", "d", "e"]
    results = await asyncio.gather(*(ds.get_component(i) for i in ids))
    for i, resp in zip(ids, results):
        pass

@pytest.mark.asyncio
async def test_get_component_edge_special_characters_in_id():
    # Edge case: ID contains special characters
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    special_id = "comp%20!@#"
    resp = await ds.get_component(special_id)

@pytest.mark.asyncio
async def test_get_component_edge_empty_id():
    # Edge case: empty string as ID
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("")

@pytest.mark.asyncio
async def test_get_component_edge_none_headers():
    # Edge case: headers=None, should not raise
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    resp = await ds.get_component("abc", headers=None)

@pytest.mark.asyncio
async def test_get_component_edge_headers_non_str_keys():
    # Edge case: headers with non-str keys
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    headers = {1: "value", (2, 3): "other"}
    resp = await ds.get_component("abc", headers=headers)

@pytest.mark.asyncio
async def test_get_component_large_scale_many_concurrent():
    # Large scale: many concurrent requests (50)
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [str(i) for i in range(50)]
    results = await asyncio.gather(*(ds.get_component(i) for i in ids))
    for i, resp in zip(ids, results):
        pass

@pytest.mark.asyncio
async def test_get_component_large_scale_different_headers():
    # Large scale: concurrent requests with different headers
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    ids = ["x", "y", "z"]
    headers_list = [
        {"A": "1"},
        {"B": "2"},
        {"C": "3"}
    ]
    tasks = [ds.get_component(i, headers=h) for i, h in zip(ids, headers_list)]
    results = await asyncio.gather(*tasks)
    for i, resp in zip(ids, results):
        pass

@pytest.mark.asyncio
async def test_get_component_throughput_small_load():
    # Throughput: small load (5 concurrent requests)
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [f"small-{i}" for i in range(5)]
    results = await asyncio.gather(*(ds.get_component(i) for i in ids))
    for i, resp in zip(ids, results):
        pass

@pytest.mark.asyncio
async def test_get_component_throughput_medium_load():
    # Throughput: medium load (30 concurrent requests)
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [f"medium-{i}" for i in range(30)]
    results = await asyncio.gather(*(ds.get_component(i) for i in ids))
    for i, resp in zip(ids, results):
        pass

@pytest.mark.asyncio
async def test_get_component_throughput_large_load():
    # Throughput: large load (100 concurrent requests)
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    ids = [f"large-{i}" for i in range(100)]
    results = await asyncio.gather(*(ds.get_component(i) for i in ids))
    for i, resp in zip(ids, results):
        pass

@pytest.mark.asyncio
async def test_get_component_throughput_sustained_pattern():
    # Throughput: sustained pattern, sequential then concurrent
    client = JiraClient(JiraRESTClientViaUsernamePassword("https://jira.example.com", "user", "pass"))
    ds = JiraDataSource(client)
    # Sequential
    for i in range(5):
        resp = await ds.get_component(f"sustained-seq-{i}")
    # Concurrent
    ids = [f"sustained-conc-{i}" for i in range(10)]
    results = await asyncio.gather(*(ds.get_component(i) for i in ids))
    for i, resp in zip(ids, results):
        pass
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-JiraDataSource.get_component-mhp16bkb and push.

Codeflash Static Badge

The optimized code achieves a **39% runtime improvement** and **10.1% throughput increase** through targeted micro-optimizations that eliminate unnecessary allocations and computations in hot code paths.

## Key Optimizations Applied:

**1. Fast-path URL formatting**: The `_safe_format_url` function now checks for the common case of `/rest/api/3/component/{id}` and uses direct string replacement instead of the expensive `format_map` operation. This reduces URL formatting time from ~423μs to ~209μs per call.

**2. Optimized dictionary conversions**: The `_as_str_dict` function now has fast-paths for:
- Empty dictionaries (immediate return of `{}`)  
- Single-key dictionaries (direct conversion without iteration)
- This eliminates unnecessary dict comprehension overhead for common cases

**3. Reduced allocations**: 
- Headers use conditional assignment (`headers if headers else {}`) instead of `dict(headers or {})`
- Path params bypass `_as_str_dict` entirely with inline `{'id': str(id)}` for the single-key case
- These changes reduce object allocation overhead

**4. HTTP client optimization**: Added a conditional check to avoid redundant format operations when `path_params` is empty, reducing string formatting overhead.

## Performance Impact:

The line profiler shows dramatic improvements in the hottest functions:
- `_safe_format_url`: 55% reduction in execution time (759μs → 318μs total)
- `_as_str_dict`: 78% reduction in execution time (1.77ms → 381μs total) 
- Overall `get_component`: 33% reduction (11.1ms → 7.4ms total)

## Test Case Benefits:

The optimizations particularly benefit:
- **High-frequency API calls** (throughput tests with 25-100 concurrent requests)
- **Simple ID-based requests** (most common use case with single path parameter)
- **Scenarios with empty/minimal headers** (fast-path empty dict handling)

These micro-optimizations compound significantly in high-throughput scenarios where `get_component` is called repeatedly, making this particularly valuable for API-intensive Jira integrations.
@codeflash-ai codeflash-ai bot requested a review from mashraf-222 November 7, 2025 15:49
@codeflash-ai codeflash-ai bot added ⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash labels Nov 7, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

⚡️ codeflash Optimization PR opened by Codeflash AI 🎯 Quality: Medium Optimization Quality according to Codeflash

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant