Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 17 additions & 13 deletions supervision/metrics/recall.py
Original file line number Diff line number Diff line change
Expand Up @@ -334,27 +334,31 @@ class ids.
num_thresholds = sorted_matches.shape[1]
num_classes = unique_classes.shape[0]

# Initialize confusion matrix
confusion_matrix = np.zeros((num_classes, num_thresholds, 3))

# Vectorized approach to handle the class-based confusion matrix updates
for class_idx, class_id in enumerate(unique_classes):
is_class = sorted_prediction_class_ids == class_id
class_mask = sorted_prediction_class_ids == class_id
num_true = class_counts[class_idx]
num_predictions = is_class.sum()
num_predictions = class_mask.sum()

if num_predictions == 0:
true_positives = np.zeros(num_thresholds)
false_positives = np.zeros(num_thresholds)
false_negatives = np.full(num_thresholds, num_true)
confusion_matrix[class_idx, :, 0] = 0 # true_positives
confusion_matrix[class_idx, :, 1] = 0 # false_positives
confusion_matrix[class_idx, :, 2] = num_true # false_negatives
elif num_true == 0:
true_positives = np.zeros(num_thresholds)
false_positives = np.full(num_thresholds, num_predictions)
false_negatives = np.zeros(num_thresholds)
confusion_matrix[class_idx, :, 0] = 0 # true_positives
confusion_matrix[class_idx, :, 1] = num_predictions # false_positives
confusion_matrix[class_idx, :, 2] = 0 # false_negatives
else:
true_positives = sorted_matches[is_class].sum(0)
false_positives = (1 - sorted_matches[is_class]).sum(0)
true_positives = sorted_matches[class_mask].sum(axis=0)
false_positives = class_mask.sum() - true_positives
false_negatives = num_true - true_positives
confusion_matrix[class_idx] = np.stack(
[true_positives, false_positives, false_negatives], axis=1
)

confusion_matrix[class_idx, :, 0] = true_positives
confusion_matrix[class_idx, :, 1] = false_positives
confusion_matrix[class_idx, :, 2] = false_negatives

return confusion_matrix

Expand Down