Skip to content

corndel-ai/testing-mini-project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Testing Mini Project

This project demonstrates a basic Machine Learning pipeline for text classification, specifically designed to categorise customer reviews as 'positive' or 'negative'. It showcases a common project structure, automated testing (unit, regression, and integration), and a simple application runner.

You run an e-commerce platform filled with product reviews. Your TextClassifier is your smart helper, enabling you to tell positive from negative reviews. To ensure this smart helper can adapt and respond to new features and changes, you introduce automated testing into your project.

Getting Started

  1. Open the project in your IDE and open the integrated terminal.

  2. Create a virtual environment and then activate it.

    • Create with venv
     # Create
     python -m venv venv
     # Activate with Windows
     .\venv\Scripts\activate
     # Activate with macOS/Linux
     source venv/bin/activate
    • Create with conda
    # Create
    conda create -n text_classifier_env python=3.8 # Or your preferred Python version
    conda activate text_classifier_env
  3. Install Dependencies

    pip install -r requirements.txt
  4. Run the Application (This demo will train the classifier on the provided CSV data and output predictions and evaluation results.)

    python app.py
  5. Run Tests (-v flagProvides verbose output, showing individual test results.)

    # Run all
    pytest -v
    # Run specific
    pytest -v tests/test_TextClassifier_unit.py

Project Structure

testing-mini-project/
├── data/
│   └── raw/
│       └── text-label.csv
├── src/
│   └── TextClassifier.py
├── tests/
│   └── conftest.py
│   └── test_TextClassifier_integration.py
│   └── test_TextClassifier_regression.py
│   └── test_TextClassifier_unit.py
├── app.py
├── requirements.txt
└── README.md

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages