REcovery of eukaryotic genomes using contrastive learning. A specialized metagenomic binning tool designed for recovering high-quality eukaryotic genomes from mixed prokaryotic-eukaryotic samples.
# Create environment and install everything
conda create -n remag -c bioconda -c conda-forge remag
conda activate remag
# Run REMAG (output directory optional - defaults to remag_output)
remag contigs.fasta -c alignments.bamdocker run --rm -v $(pwd):/data danielzmbp/remag:latest \
/data/contigs.fasta -c /data/alignments.bam -o /data/output# Create environment first
conda create -n remag python=3.9
conda activate remag
# Install dependencies and REMAG
conda install -c bioconda miniprot
pip install remag
# Run REMAG
remag contigs.fasta -c alignments.bamThis is the easiest method as conda handles all dependencies automatically:
# Create a new environment with all dependencies
conda create -n remag -c bioconda -c conda-forge remag
conda activate remag
# Verify installation
remag --helpNote: miniprot is pulled in automatically as a dependency of the conda package; no separate installation is required when installing remag via conda.
If you prefer pip, you'll need to install the external dependency separately:
# Step 1: Create and activate environment
conda create -n remag python=3.9
conda activate remag
# Step 2: Install external dependency
conda install -c bioconda miniprot
# Step 3: Install REMAG from PyPI
pip install remagFor additional features:
# Basic installation
conda create -n remag -c bioconda -c conda-forge remag
conda activate remag
# Add optional plotting capabilities
conda install -c conda-forge matplotlib umap-learn# Pull and run the latest version (output directory defaults to remag_output)
docker run --rm -v $(pwd):/data danielzmbp/remag:latest \
/data/contigs.fasta -c /data/alignments.bam
# Or specify output directory
docker run --rm -v $(pwd):/data danielzmbp/remag:latest \
/data/contigs.fasta -c /data/alignments.bam -o /data/output
# For interactive use
docker run -it --rm -v $(pwd):/data danielzmbp/remag:latest /bin/bash# Pull and run the latest version directly
singularity run docker://danielzmbp/remag:latest \
contigs.fasta -c alignments.bam
# Build Singularity image from Docker Hub
singularity build remag_v0.3.4.sif docker://danielzmbp/remag:v0.3.4
# Or build latest version
singularity build remag_latest.sif docker://danielzmbp/remag:latest
# Run with Singularity
singularity run --bind $(pwd):/data remag_v0.3.4.sif \
/data/contigs.fasta -c /data/alignments.bam
# Or use exec for direct command execution
singularity exec --bind $(pwd):/data remag_v0.3.4.sif \
remag /data/contigs.fasta -c /data/alignments.bam -o /data/output
# For interactive shell
singularity shell --bind $(pwd):/data remag_v0.3.4.sif
# Build a local Singularity image file (optional)
singularity build remag.sif docker://danielzmbp/remag:latest
singularity run remag.sif contigs.fasta -c alignments.bam# Create and activate conda environment
conda create -n remag python=3.9
conda activate remag
# Clone and install
git clone https://github.com/danielzmbp/remag.git
cd remag
pip install .For contributors and developers:
# Install with development dependencies
pip install -e ".[dev]"For visualization capabilities:
# Install with plotting dependencies
pip install "remag[plotting]"After installation, you can use REMAG via the command line:
# Basic usage (output defaults to remag_output in FASTA directory)
remag contigs.fasta -c alignments.bam
# With explicit output directory
remag contigs.fasta -c alignments.bam -o output_directory
# Multiple samples using glob patterns
remag contigs.fasta -c "samples/*.bam"
# Using explicit -f flag (both styles work)
remag -f contigs.fasta -c alignments.bam
# Keep intermediate files with -k shorthand
remag contigs.fasta -c alignments.bam -kpython -m remag contigs.fasta -c alignments.bam# Quick reference (basic options)
remag -h
# Full documentation (all advanced options)
remag --helpREMAG uses a sophisticated multi-stage pipeline specifically designed for eukaryotic genome recovery:
- Eukaryotic Filtering: By default, REMAG automatically filters for eukaryotic contigs using the integrated HyenaDNA LLM-based classifier (can be disabled with
--skip-bacterial-filter) - Feature Extraction: Combines k-mer composition (4-mers) with coverage profiles across multiple samples. Large contigs are split into overlapping fragments for augmentation during training
- Contrastive Learning: Trains a Siamese neural network using the Barlow Twins self-supervised loss function. This creates embeddings where fragments from the same contig are close together
- Adaptive Resolution: Automatically determines optimal Leiden clustering resolution by testing multiple resolutions and selecting the one that maximizes individual bin completeness
- Clustering: Graph-based Leiden clustering on the learned contig embeddings to form bins
- Quality Assessment: Uses miniprot to align bins against a database of eukaryotic core genes to detect contamination
- Iterative Refinement: Automatically splits contaminated bins based on core gene duplications, then tests lower resolutions to find the most conservative solution
- Automatic Eukaryotic Filtering: The HyenaDNA classifier uses a pre-trained genomic foundation model to identify and retain eukaryotic sequences
- Multi-Sample Support: Can process coverage information from multiple samples (BAM/CRAM files) simultaneously
- Adaptive Resolution: Automatically determines optimal clustering resolution based on bin completeness and contamination
- Barlow Twins Loss: Uses a self-supervised contrastive learning approach that doesn't require negative pairs
- Fragment Augmentation: Large contigs are split into multiple overlapping fragments during training to improve representation learning
- Conservative Refinement: After successful bin refinement, tests lower resolutions to find the most consolidated solution that maintains quality
Use remag -h for quick reference or remag --help for full documentation.
FASTA_ARG Input FASTA file (positional argument). Can also use -f/--fasta
-f, --fasta PATH Input FASTA file with contigs to bin. Can be gzipped.
-c, --coverage PATH Coverage files for calculation. Supports BAM, CRAM (indexed), and TSV formats.
Auto-detects format by extension. Supports space-separated paths and glob patterns
(e.g., "*.bam", "*.cram", "*.tsv"). Use quotes around glob patterns.
-o, --output PATH Output directory for results. [default: remag_output in FASTA directory]
-t, --threads INTEGER Number of CPU cores to use for parallel processing. [default: 8]
-v, --verbose Enable verbose logging.
-k, --keep-intermediate Keep intermediate files (embeddings, features, model, etc.).
-h, --help Show quick reference or full help.
For complete list of advanced options (neural network parameters, clustering settings, refinement options, etc.), run:
remag --helpREMAG produces several output files:
bins/: Directory containing FASTA files for each binbins.csv: Final contig-to-bin assignmentsembeddings.csv: Contig embeddings from the neural networkremag.log: Detailed log file*_eukaryotic_filtered.fasta: Filtered FASTA file with only eukaryotic contigs retained (when eukaryotic filtering is enabled)
siamese_model.pt: Trained Siamese neural network modelkmer_embeddings.csv: K-mer encoder embeddings (before fusion)coverage_embeddings.csv: Coverage encoder embeddings (before fusion)params.json: Complete run parameters for reproducibilityfeatures.csv: Extracted k-mer and coverage featuresfragments.pkl: Fragment information used during traininghyenadna_classification_results.csv: HyenaDNA eukaryotic classification resultsorganism_estimation_gene_counts.json: Gene counts used for adaptive resolution determinationrefinement_summary.json: Summary of the bin refinement processgene_contig_mappings.json: Cached gene-to-contig mappings for faster refinementcore_gene_duplication_results.json: Core gene duplication analysis from refinementtemp_miniprot/: Temporary directory for miniprot alignments (removed unless --keep-intermediate)
To generate UMAP visualization plots:
# Install plotting dependencies if not already installed
pip install remag[plotting]
# Generate UMAP visualization from embeddings
python scripts/plot_features.py --features output_directory/embeddings.csv --clusters output_directory/bins.csv --output output_directoryThis creates:
umap_coordinates.csv: UMAP projections for visualizationumap_plot.pdf: UMAP visualization plot with cluster assignments
- Python 3.9+
- PyTorch (≥1.11.0)
- einops (≥0.6.0) - for HyenaDNA model operations
- scikit-learn (≥1.0.0)
- leidenalg (≥0.9.0) - for graph-based clustering
- igraph (≥0.10.0) - for graph construction in Leiden clustering
- pandas (≥1.3.0)
- numpy (≥1.21.0)
- pysam (≥0.18.0)
- loguru (≥0.6.0)
- tqdm (≥4.62.0)
- rich-click (≥1.5.0)
- miniprot - Required for core gene analysis and quality assessment
- Install with:
conda install -c bioconda miniprot
- Install with:
- For visualization: matplotlib (≥3.5.0), umap-learn (≥0.5.0)
- Install with:
pip install remag[plotting]
- Install with:
The package includes a pre-trained HyenaDNA classifier model for eukaryotic contig filtering. The HyenaDNA model is a genomic foundation model based on the Hyena operator architecture.
The integrated HyenaDNA classifier uses a pre-trained genomic foundation model:
- Repository: HazyResearch/hyena-dna
- Paper: Nguyen E, Poli M, Faizi M, et al. HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution. NeurIPS 2023.
MIT License - see LICENSE file for details.
If you use REMAG in your research, please cite:
@software{gomez_perez_2025_remag,
author = {Gómez-Pérez, Daniel},
title = {REMAG: Recovering high-quality Eukaryotic genomes from complex metagenomes},
year = 2025,
publisher = {Zenodo},
doi = {10.5281/zenodo.16443991},
url = {https://doi.org/10.5281/zenodo.16443991}
}Note: The DOI 10.5281/zenodo.16443991 represents all versions and will always resolve to the latest release. A manuscript describing REMAG is in preparation.