Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
/*
* Copyright 2021 The Dapr Authors
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
limitations under the License.
*/

package io.dapr.examples.conversation;

import io.dapr.client.DaprClientBuilder;
import io.dapr.client.DaprPreviewClient;
import io.dapr.client.domain.AssistantMessage;
import io.dapr.client.domain.ConversationInputAlpha2;
import io.dapr.client.domain.ConversationMessage;
import io.dapr.client.domain.ConversationMessageContent;
import io.dapr.client.domain.ConversationRequestAlpha2;
import io.dapr.client.domain.ConversationResponseAlpha2;
import io.dapr.client.domain.ConversationResultAlpha2;
import io.dapr.client.domain.ConversationResultChoices;
import io.dapr.client.domain.ConversationToolCalls;
import io.dapr.client.domain.ConversationToolCallsOfFunction;
import io.dapr.client.domain.SystemMessage;
import io.dapr.client.domain.ToolMessage;
import io.dapr.client.domain.UserMessage;
import reactor.core.publisher.Mono;

import java.util.ArrayList;
import java.util.List;

public class AssistantMessageDemo {
/**
* The main method to demonstrate conversation AI with assistant messages and conversation history.
*
* @param args Input arguments (unused).
*/
public static void main(String[] args) {
try (DaprPreviewClient client = new DaprClientBuilder().buildPreviewClient()) {
System.out.println("Demonstrating Conversation AI with Assistant Messages and Conversation History");

// Create a conversation history with multiple message types
List<ConversationMessage> conversationHistory = new ArrayList<>();

// 1. System message to set context
SystemMessage systemMessage = new SystemMessage(List.of(
new ConversationMessageContent("You are a helpful assistant that can help with weather queries.")
));
systemMessage.setName("WeatherBot");
conversationHistory.add(systemMessage);

// 2. Initial user greeting
UserMessage greeting = new UserMessage(List.of(
new ConversationMessageContent("Hello! I need help with weather information.")
));
greeting.setName("User123");
conversationHistory.add(greeting);

// 3. Assistant response with tool call
AssistantMessage assistantResponse = new AssistantMessage(
List.of(new ConversationMessageContent("I'll help you with weather information. Let me check the weather for you.")),
List.of(new ConversationToolCalls(
new ConversationToolCallsOfFunction("get_weather", "{\"location\": \"San Francisco\", \"unit\": \"fahrenheit\"}")
))
);
assistantResponse.setName("WeatherBot");
conversationHistory.add(assistantResponse);

// 4. Tool response (simulating weather API response)
ToolMessage toolResponse = new ToolMessage(List.of(
new ConversationMessageContent("{\"temperature\": \"72F\", \"condition\": \"sunny\", \"humidity\": \"65%\"}")
));
toolResponse.setName("weather_api");
conversationHistory.add(toolResponse);

// 5. Current user question
UserMessage currentQuestion = new UserMessage(List.of(
new ConversationMessageContent("Based on that weather data, should I wear a jacket today?")
));
currentQuestion.setName("User123");
conversationHistory.add(currentQuestion);

// Create conversation input with the full history
ConversationInputAlpha2 conversationInput = new ConversationInputAlpha2(conversationHistory);
conversationInput.setScrubPii(false);

// Create the conversation request
ConversationRequestAlpha2 request = new ConversationRequestAlpha2("echo", List.of(conversationInput))
.setContextId("assistant-demo-context")
.setTemperature(0.8d);

// Send the request
System.out.println("Sending conversation with assistant messages and history...");
System.out.println("Conversation includes:");
System.out.println("- System message (context setting)");
System.out.println("- User greeting");
System.out.println("- Assistant response with tool call");
System.out.println("- Tool response with weather data");
System.out.println("- User follow-up question");

Mono<ConversationResponseAlpha2> responseMono = client.converseAlpha2(request);
ConversationResponseAlpha2 response = responseMono.block();

// Process and display the response
if (response != null && response.getOutputs() != null && !response.getOutputs().isEmpty()) {
ConversationResultAlpha2 result = response.getOutputs().get(0);
if (result.getChoices() != null && !result.getChoices().isEmpty()) {
ConversationResultChoices choice = result.getChoices().get(0);

if (choice.getMessage() != null && choice.getMessage().getContent() != null) {
System.out.printf("Assistant Response: %s%n", choice.getMessage().getContent());
}

// Check for additional tool calls in the response
if (choice.getMessage() != null && choice.getMessage().getToolCalls() != null) {
System.out.println("Assistant requested additional tool calls:");
choice.getMessage().getToolCalls().forEach(toolCall -> {
System.out.printf("Tool: %s, Arguments: %s%n",
toolCall.getFunction().getName(),
toolCall.getFunction().getArguments());
});
}
}
}

System.out.println("Assistant message demonstration completed.");

} catch (Exception e) {
throw new RuntimeException(e);
}
}
}

This file was deleted.

41 changes: 31 additions & 10 deletions examples/src/main/java/io/dapr/examples/conversation/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -45,30 +45,51 @@ Run `dapr init` to initialize Dapr in Self-Hosted Mode if it's not already initi
### Running the example

This example uses the Java SDK Dapr client in order to **Converse** with an LLM.
`DemoConversationAI.java` is the example class demonstrating these features.
`UserMessageDemo.java` is the example class demonstrating these features.
Kindly check [DaprPreviewClient.java](https://github.com/dapr/java-sdk/blob/master/sdk/src/main/java/io/dapr/client/DaprPreviewClient.java) for a detailed description of the supported APIs.

```java
public class DemoConversationAI {
public class UserMessageDemo {
/**
* The main method to start the client.
*
* @param args Input arguments (unused).
*/
public static void main(String[] args) {
try (DaprPreviewClient client = new DaprClientBuilder().buildPreviewClient()) {
Map<Property<?>, String> overrides = Map.of(
Properties.HTTP_PORT, "3500",
Properties.GRPC_PORT, "50001"
);

try (DaprPreviewClient client = new DaprClientBuilder().withPropertyOverrides(overrides).buildPreviewClient()) {
System.out.println("Sending the following input to LLM: Hello How are you? This is the my number 672-123-4567");

ConversationInput daprConversationInput = new ConversationInput("Hello How are you? "
+ "This is the my number 672-123-4567");
// Create user message with content
UserMessage userMessage = new UserMessage(List.of(new ConversationMessageContent("Hello How are you? "
+ "This is the my number 672-123-4567")));

// Create conversation input with the user message
ConversationInputAlpha2 daprConversationInput = new ConversationInputAlpha2(List.of(userMessage));

// Component name is the name provided in the metadata block of the conversation.yaml file.
Mono<ConversationResponse> responseMono = client.converse(new ConversationRequest("echo",
Mono<ConversationResponseAlpha2> responseMono = client.converseAlpha2(new ConversationRequestAlpha2("echo",
List.of(daprConversationInput))
.setContextId("contextId")
.setScrubPii(true).setTemperature(1.1d));
ConversationResponse response = responseMono.block();
System.out.printf("Conversation output: %s", response.getConversationOutpus().get(0).getResult());
.setScrubPii(true)
.setTemperature(1.1d));

ConversationResponseAlpha2 response = responseMono.block();

// Extract and print the conversation result
if (response != null && response.getOutputs() != null && !response.getOutputs().isEmpty()) {
ConversationResultAlpha2 result = response.getOutputs().get(0);
if (result.getChoices() != null && !result.getChoices().isEmpty()) {
ConversationResultChoices choice = result.getChoices().get(0);
if (choice.getMessage() != null && choice.getMessage().getContent() != null) {
System.out.printf("Conversation output: %s", choice.getMessage().getContent());
}
}
}
} catch (Exception e) {
throw new RuntimeException(e);
}
Expand All @@ -88,7 +109,7 @@ sleep: 10
-->

```bash
dapr run --resources-path ./components/conversation --app-id myapp --app-port 8080 --dapr-http-port 3500 --dapr-grpc-port 51439 --log-level debug -- java -jar target/dapr-java-sdk-examples-exec.jar io.dapr.examples.conversation.DemoConversationAI
dapr run --resources-path ./components/conversation --app-id myapp --app-port 8080 --dapr-http-port 3500 --dapr-grpc-port 51439 --log-level debug -- java -jar target/dapr-java-sdk-examples-exec.jar io.dapr.examples.conversation.UserMessageDemo
```

<!-- END_STEP -->
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/*
* Copyright 2021 The Dapr Authors
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
limitations under the License.
*/

package io.dapr.examples.conversation;

import io.dapr.client.DaprClientBuilder;
import io.dapr.client.DaprPreviewClient;
import io.dapr.client.domain.ConversationInputAlpha2;
import io.dapr.client.domain.ConversationMessageContent;
import io.dapr.client.domain.ConversationRequestAlpha2;
import io.dapr.client.domain.ConversationResponseAlpha2;
import io.dapr.client.domain.ConversationResultAlpha2;
import io.dapr.client.domain.ConversationResultChoices;
import io.dapr.client.domain.ConversationTools;
import io.dapr.client.domain.ConversationToolsFunction;
import io.dapr.client.domain.SystemMessage;
import io.dapr.client.domain.UserMessage;
import reactor.core.publisher.Mono;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class ToolsCallDemo {
/**
* The main method to demonstrate conversation AI with tools/function calling.
*
* @param args Input arguments (unused).
*/
public static void main(String[] args) {
try (DaprPreviewClient client = new DaprClientBuilder().buildPreviewClient()) {
System.out.println("Demonstrating Conversation AI with Tools/Function Calling");

// Create system message to set context
SystemMessage systemMessage = new SystemMessage(List.of(
new ConversationMessageContent("You are a helpful weather assistant. Use the provided tools to get weather information.")
));

// Create user message asking for weather
UserMessage userMessage = new UserMessage(List.of(
new ConversationMessageContent("What's the weather like in San Francisco?")
));

// Create conversation input with messages
ConversationInputAlpha2 conversationInput = new ConversationInputAlpha2(List.of(systemMessage, userMessage));

// Define function parameters for the weather tool
Map<String, Object> functionParams = new HashMap<>();
functionParams.put("location", "string");
functionParams.put("unit", "string");

// Create the weather function definition
ConversationToolsFunction weatherFunction = new ConversationToolsFunction("get_current_weather", functionParams);
weatherFunction.setDescription("Get the current weather for a specified location");

// Create the tool wrapper
ConversationTools weatherTool = new ConversationTools(weatherFunction);

// Create the conversation request with tools
ConversationRequestAlpha2 request = new ConversationRequestAlpha2("echo", List.of(conversationInput))
.setContextId("weather-demo-context")
.setTemperature(0.7d)
.setTools(List.of(weatherTool));

// Send the request
System.out.println("Sending request to AI with weather tool available...");
Mono<ConversationResponseAlpha2> responseMono = client.converseAlpha2(request);
ConversationResponseAlpha2 response = responseMono.block();

// Process and display the response
if (response != null && response.getOutputs() != null && !response.getOutputs().isEmpty()) {
ConversationResultAlpha2 result = response.getOutputs().get(0);
if (result.getChoices() != null && !result.getChoices().isEmpty()) {
ConversationResultChoices choice = result.getChoices().get(0);

// Check if the AI wants to call a tool
if (choice.getMessage() != null && choice.getMessage().getToolCalls() != null) {
System.out.println("AI requested to call tools:");
choice.getMessage().getToolCalls().forEach(toolCall -> {
System.out.printf("Tool: %s, Arguments: %s%n",
toolCall.getFunction().getName(),
toolCall.getFunction().getArguments());
});
}

// Display the message content if available
if (choice.getMessage() != null && choice.getMessage().getContent() != null) {
System.out.printf("AI Response: %s%n", choice.getMessage().getContent());
}
}
}

System.out.println("Tools call demonstration completed.");

} catch (Exception e) {
throw new RuntimeException(e);
}
}
}
Loading
Loading