Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": null,
"metadata": {
"collapsed": true
},
Expand Down Expand Up @@ -142,9 +142,28 @@
" # Apply Dropout\n",
" norm3 = tf.nn.dropout(norm3, _dropout)\n",
"\n",
" # Add a 4th Convolution Layer\n",
" conv4 = conv2d('conv4', norm3, _weights['wc4'], _biases['bc4'])\n",
" # Apply Max Pooling\n",
" pool4 = max_pool('pool4', conv4, k=2)\n",
" # Apply Normalization\n",
" norm4 = norm('norm4', pool4, lsize=4)\n",
" # Apply Dropout\n",
" norm4 = tf.nn.dropout(norm4, _dropout)\n",
"\n",
" # Add a 5th Convolution Layer\n",
" conv5 = conv2d('conv5', norm4, _weights['wc5'], _biases['bc5'])\n",
" # Apply Max Pooling\n",
" pool5 = max_pool('pool5', conv5, k=2)\n",
" # Apply Normalization\n",
" norm5 = norm('norm5', pool5, lsize=4)\n",
" # Apply Dropout\n",
" norm5 = tf.nn.dropout(norm5, _dropout)\n",
"\n",
" # Fully connected layer\n",
" # Reshape conv3 output to fit dense layer input\n",
" dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) \n",
" # Update the reshape input for the fully connected layer to reflect the output of norm5\n",
" dense1 = tf.reshape(norm5, [-1, _weights['wd1'].get_shape().as_list()[0]]) \n",
"\n",
" # Relu activation\n",
" dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')\n",
" \n",
Expand All @@ -158,7 +177,7 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": null,
"metadata": {
"collapsed": true
},
Expand All @@ -169,6 +188,8 @@
" 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),\n",
" 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),\n",
" 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),\n",
" 'wc4': tf.Variable(tf.random_normal([3, 3, 256, 384])),\n",
" 'wc5': tf.Variable(tf.random_normal([3, 3, 384, 256])),\n",
" 'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),\n",
" 'wd2': tf.Variable(tf.random_normal([1024, 1024])),\n",
" 'out': tf.Variable(tf.random_normal([1024, 10]))\n",
Expand All @@ -177,6 +198,8 @@
" 'bc1': tf.Variable(tf.random_normal([64])),\n",
" 'bc2': tf.Variable(tf.random_normal([128])),\n",
" 'bc3': tf.Variable(tf.random_normal([256])),\n",
" 'bc4': tf.Variable(tf.random_normal([384])),\n",
" 'bc5': tf.Variable(tf.random_normal([256])),\n",
" 'bd1': tf.Variable(tf.random_normal([1024])),\n",
" 'bd2': tf.Variable(tf.random_normal([1024])),\n",
" 'out': tf.Variable(tf.random_normal([n_classes]))\n",
Expand Down