NumCpp: A Templatized Header Only C++ Implementation of the Python NumPy Library
Author: David Pilger [email protected]
Compilers:
Visual Studio: 2022
GNU: 13.3, 14.2
Clang: 18, 19
Boost Versions:
1.73+
This quick start guide is meant as a very brief overview of some of the things that can be done with NumCpp. For a full breakdown of everything available in the NumCpp library please visit the Full Documentation.
The main data structure in NumCpp is the NdArray.  It is inherently a 2D array class, with 1D arrays being implemented as 1xN arrays.  There is also a DataCube class that is provided as a convenience container for storing an array of 2D NdArrays, but it has limited usefulness past a simple container.
| NumPy | NumCpp | 
|---|---|
a = np.array([[1, 2], [3, 4], [5, 6]]) | 
nc::NdArray<int> a = { {1, 2}, {3, 4}, {5, 6} } | 
a.reshape([2, 3]) | 
a.reshape(2, 3) | 
a.astype(np.double) | 
a.astype<double>() | 
Many initializer functions are provided that return NdArrays for common needs.
| NumPy | NumCpp | 
|---|---|
np.linspace(1, 10, 5) | 
nc::linspace<dtype>(1, 10, 5) | 
np.arange(3, 7) | 
nc::arange<dtype>(3, 7) | 
np.eye(4) | 
nc::eye<dtype>(4) | 
np.zeros([3, 4]) | 
nc::zeros<dtype>(3, 4) | 
nc::NdArray<dtype>(3, 4) a = 0 | 
|
np.ones([3, 4]) | 
nc::ones<dtype>(3, 4) | 
nc::NdArray<dtype>(3, 4) a = 1 | 
|
np.nans([3, 4]) | 
nc::nans(3, 4) | 
nc::NdArray<double>(3, 4) a = nc::constants::nan | 
|
np.empty([3, 4]) | 
nc::empty<dtype>(3, 4) | 
nc::NdArray<dtype>(3, 4) a | 
NumCpp offers NumPy style slicing and broadcasting.
| NumPy | NumCpp | 
|---|---|
a[2, 3] | 
a(2, 3) | 
a[2:5, 5:8] | 
a(nc::Slice(2, 5), nc::Slice(5, 8)) | 
a({2, 5}, {5, 8}) | 
|
a[:, 7] | 
a(a.rSlice(), 7) | 
a[a > 5] | 
a[a > 5] | 
a[a > 5] = 0 | 
a.putMask(a > 5, 0) | 
The random module provides simple ways to create random arrays.
| NumPy | NumCpp | 
|---|---|
np.random.seed(666) | 
nc::random::seed(666) | 
np.random.randn(3, 4) | 
nc::random::randN<double>(nc::Shape(3, 4)) | 
nc::random::randN<double>({3, 4}) | 
|
np.random.randint(0, 10, [3, 4]) | 
nc::random::randInt<int>(nc::Shape(3, 4), 0, 10) | 
nc::random::randInt<int>({3, 4}, 0, 10) | 
|
np.random.rand(3, 4) | 
nc::random::rand<double>(nc::Shape(3,4)) | 
nc::random::rand<double>({3, 4}) | 
|
np.random.choice(a, 3) | 
nc::random::choice(a, 3) | 
Many ways to concatenate NdArray are available.
| NumPy | NumCpp | 
|---|---|
np.stack([a, b, c], axis=0) | 
nc::stack({a, b, c}, nc::Axis::ROW) | 
np.vstack([a, b, c]) | 
nc::vstack({a, b, c}) | 
np.hstack([a, b, c]) | 
nc::hstack({a, b, c}) | 
np.append(a, b, axis=1) | 
nc::append(a, b, nc::Axis::COL) | 
The following return new NdArrays.
| NumPy | NumCpp | 
|---|---|
np.diagonal(a) | 
nc::diagonal(a) | 
np.triu(a) | 
nc::triu(a) | 
np.tril(a) | 
nc::tril(a) | 
np.flip(a, axis=0) | 
nc::flip(a, nc::Axis::ROW) | 
np.flipud(a) | 
nc::flipud(a) | 
np.fliplr(a) | 
nc::fliplr(a) | 
NumCpp follows the idioms of the C++ STL providing iterator pairs to iterate on arrays in different fashions.
| NumPy | NumCpp | 
|---|---|
for value in a | 
for(auto it = a.begin(); it < a.end(); ++it) | 
for(auto& value : a) | 
Logical FUNCTIONS in NumCpp behave the same as NumPy.
| NumPy | NumCpp | 
|---|---|
np.where(a > 5, a, b) | 
nc::where(a > 5, a, b) | 
np.any(a) | 
nc::any(a) | 
np.all(a) | 
nc::all(a) | 
np.logical_and(a, b) | 
nc::logical_and(a, b) | 
np.logical_or(a, b) | 
nc::logical_or(a, b) | 
np.isclose(a, b) | 
nc::isclose(a, b) | 
np.allclose(a, b) | 
nc::allclose(a, b) | 
| NumPy | NumCpp | 
|---|---|
np.equal(a, b) | 
nc::equal(a, b) | 
a == b | 
|
np.not_equal(a, b) | 
nc::not_equal(a, b) | 
a != b | 
|
rows, cols = np.nonzero(a) | 
auto [rows, cols] = nc::nonzero(a) | 
| NumPy | NumCpp | 
|---|---|
np.min(a) | 
nc::min(a) | 
np.max(a) | 
nc::max(a) | 
np.argmin(a) | 
nc::argmin(a) | 
np.argmax(a) | 
nc::argmax(a) | 
np.sort(a, axis=0) | 
nc::sort(a, nc::Axis::ROW) | 
np.argsort(a, axis=1) | 
nc::argsort(a, nc::Axis::COL) | 
np.unique(a) | 
nc::unique(a) | 
np.setdiff1d(a, b) | 
nc::setdiff1d(a, b) | 
np.diff(a) | 
nc::diff(a) | 
Reducers accumulate values of NdArrays along specified axes. When no axis is specified, values are accumulated along all axes.
| NumPy | NumCpp | 
|---|---|
np.sum(a) | 
nc::sum(a) | 
np.sum(a, axis=0) | 
nc::sum(a, nc::Axis::ROW) | 
np.prod(a) | 
nc::prod(a) | 
np.prod(a, axis=0) | 
nc::prod(a, nc::Axis::ROW) | 
np.mean(a) | 
nc::mean(a) | 
np.mean(a, axis=0) | 
nc::mean(a, nc::Axis::ROW) | 
np.count_nonzero(a) | 
nc::count_nonzero(a) | 
np.count_nonzero(a, axis=0) | 
nc::count_nonzero(a, nc::Axis::ROW) | 
Print and file output methods.  All NumCpp classes support a print() method and << stream operators.
| NumPy | NumCpp | 
|---|---|
print(a) | 
a.print() | 
std::cout << a | 
|
a.tofile(filename, sep=’\n’) | 
a.tofile(filename, '\n') | 
np.fromfile(filename, sep=’\n’) | 
nc::fromfile<dtype>(filename, '\n') | 
np.dump(a, filename) | 
nc::dump(a, filename) | 
np.load(filename) | 
nc::load<dtype>(filename) | 
NumCpp universal functions are provided for a large set number of mathematical functions.
| NumPy | NumCpp | 
|---|---|
np.abs(a) | 
nc::abs(a) | 
np.sign(a) | 
nc::sign(a) | 
np.remainder(a, b) | 
nc::remainder(a, b) | 
np.clip(a, 3, 8) | 
nc::clip(a, 3, 8) | 
np.interp(x, xp, fp) | 
nc::interp(x, xp, fp) | 
| NumPy | NumCpp | 
|---|---|
np.exp(a) | 
nc::exp(a) | 
np.expm1(a) | 
nc::expm1(a) | 
np.log(a) | 
nc::log(a) | 
np.log1p(a) | 
nc::log1p(a) | 
| NumPy | NumCpp | 
|---|---|
np.power(a, 4) | 
nc::power(a, 4) | 
np.sqrt(a) | 
nc::sqrt(a) | 
np.square(a) | 
nc::square(a) | 
np.cbrt(a) | 
nc::cbrt(a) | 
| NumPy | NumCpp | 
|---|---|
np.sin(a) | 
nc::sin(a) | 
np.cos(a) | 
nc::cos(a) | 
np.tan(a) | 
nc::tan(a) | 
| NumPy | NumCpp | 
|---|---|
np.sinh(a) | 
nc::sinh(a) | 
np.cosh(a) | 
nc::cosh(a) | 
np.tanh(a) | 
nc::tanh(a) | 
| NumPy | NumCpp | 
|---|---|
np.isnan(a) | 
nc::isnan(a) | 
np.isinf(a) | 
nc::isinf(a) | 
| NumPy | NumCpp | 
|---|---|
np.linalg.norm(a) | 
nc::norm(a) | 
np.dot(a, b) | 
nc::dot(a, b) | 
np.linalg.det(a) | 
nc::linalg::det(a) | 
np.linalg.inv(a) | 
nc::linalg::inv(a) | 
np.linalg.lstsq(a, b) | 
nc::linalg::lstsq(a, b) | 
np.linalg.matrix_power(a, 3) | 
nc::linalg::matrix_power(a, 3) | 
Np.linalg.multi_dot(a, b, c) | 
nc::linalg::multi_dot({a, b, c}) | 
np.linalg.svd(a) | 
nc::linalg::svd(a) | 
