-
Notifications
You must be signed in to change notification settings - Fork 67
fix(tidy3d): FXC-4641-fix-gradients-in-custom-medium #3113
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
marcorudolphflex
wants to merge
1
commit into
develop
Choose a base branch
from
FXC-4641-fix-gradients-in-custom-medium
base: develop
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
354 changes: 354 additions & 0 deletions
354
tests/test_components/autograd/numerical/test_autograd_medium_numerical.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,354 @@ | ||
| from __future__ import annotations | ||
|
|
||
| import sys | ||
|
|
||
| import autograd.numpy as anp | ||
| import matplotlib.pyplot as plt | ||
| import numpy as np | ||
| import pytest | ||
| from autograd import value_and_grad | ||
|
|
||
| import tidy3d as td | ||
| import tidy3d.web as web | ||
| from tidy3d.components.autograd import get_static | ||
|
|
||
| td.config.local_cache.enabled = True | ||
|
|
||
| SIM_SIZE_SCALE = (4, 3, 4) | ||
| BOX_SIZE_SCALE = (1, 1, 1) | ||
| GRID_STEPS_PER_WVL = 30 | ||
| RUN_TIME = 2e-12 | ||
| ANGLE_TOL = 10.0 | ||
| FD_STEP = 5e-2 | ||
|
|
||
| TEST_CASES = [ | ||
| { | ||
| "name": "opt_flux_iso", | ||
| "wavelength": 1.0, | ||
| "permittivities": (2.2, 2.2, 2.2), | ||
| "objective_kind": "flux", | ||
| "monitor_size": (np.inf, np.inf, 0.0), | ||
| "polarization": 0.0, | ||
| "medium_type": "isotropic", | ||
| }, | ||
| { | ||
| "name": "mw_intensity_iso", | ||
| "wavelength": 1.6, | ||
| "permittivities": (1.8, 1.8, 1.8), | ||
| "objective_kind": "intensity", | ||
| "monitor_size": (0.4, 0.4, 0.0), | ||
| "polarization": np.pi / 5, | ||
| "medium_type": "isotropic", | ||
| }, | ||
| { | ||
| "name": "opt_flux_custom_iso", | ||
| "wavelength": 1.3, | ||
| "permittivities": (2.0, 2.0, 2.0), | ||
| "objective_kind": "flux", | ||
| "monitor_size": (np.inf, np.inf, 0.0), | ||
| "polarization": 0.0, | ||
| "medium_type": "custom", | ||
| }, | ||
| { | ||
| "name": "mw_int_custom_iso", | ||
| "wavelength": 1.1, | ||
| "permittivities": (1.6, 1.6, 1.6), | ||
| "objective_kind": "intensity", | ||
| "monitor_size": (0.3, 0.3, 0.0), | ||
| "polarization": np.pi / 3, | ||
| "medium_type": "custom", | ||
| }, | ||
| ] | ||
|
|
||
|
|
||
| def _scale_monitor_dim(dim: float, wavelength: float) -> float: | ||
| if np.isinf(dim): | ||
| return np.inf | ||
| return dim * wavelength | ||
|
|
||
|
|
||
| def _box_geometry(case) -> td.Box: | ||
| size = tuple(scale * case["wavelength"] for scale in BOX_SIZE_SCALE) | ||
| return td.Box(size=size, center=(0.0, 0.0, 0.0)) | ||
|
|
||
|
|
||
| def _build_base_sim(case): | ||
| wavelength = case["wavelength"] | ||
| freq0 = td.C_0 / wavelength | ||
| sim_size = tuple(scale * wavelength for scale in SIM_SIZE_SCALE) | ||
|
|
||
| plane_wave = td.PlaneWave( | ||
| center=(0.0, 0.0, -0.75 * sim_size[2] / 2), | ||
| size=(sim_size[0], sim_size[1], 0.0), | ||
| source_time=td.GaussianPulse(freq0=freq0, fwidth=freq0 / 10.0), | ||
| direction="+", | ||
| pol_angle=case.get("polarization", 0.0), | ||
| ) | ||
|
|
||
| monitor_center = (0.0, 0.0, sim_size[2] / 2 * 0.75) | ||
| monitor_size = tuple(_scale_monitor_dim(dim, wavelength) for dim in case["monitor_size"]) | ||
| monitor_name = f"{case['name']}_monitor" | ||
| monitor = td.FieldMonitor( | ||
| center=monitor_center, | ||
| size=monitor_size, | ||
| freqs=[freq0], | ||
| name=monitor_name, | ||
| colocate=False, | ||
| ) | ||
|
|
||
| sim = td.Simulation( | ||
| size=sim_size, | ||
| center=(0.0, 0.0, 0.0), | ||
| grid_spec=td.GridSpec.auto(min_steps_per_wvl=GRID_STEPS_PER_WVL, wavelength=wavelength), | ||
| boundary_spec=td.BoundarySpec.pml(x=True, y=True, z=True), | ||
| sources=[plane_wave], | ||
| monitors=[monitor], | ||
| structures=[], | ||
| run_time=RUN_TIME, | ||
| ) | ||
| return sim, monitor_name, freq0 | ||
|
|
||
|
|
||
| def _add_medium(case, base_sim: td.Simulation, box_geom: td.Box, eps_vals) -> td.Simulation: | ||
| medium_type = case["medium_type"] | ||
|
|
||
| coords = None | ||
| factor = None | ||
| if medium_type in ("custom_anisotropic", "custom"): | ||
| coords = { | ||
| "x": np.linspace(-box_geom.size[0] / 2, box_geom.size[0] / 2, 4), | ||
| "y": np.linspace(-box_geom.size[1] / 2, box_geom.size[1] / 2, 5), | ||
| "z": np.linspace(-box_geom.size[2] / 2, box_geom.size[2] / 2, 3), | ||
| } | ||
| _cx, _cy, _cz = np.meshgrid(coords["x"], coords["y"], coords["z"], indexing="ij") | ||
| factor = 1 + 0.2 * (_cx + _cy + _cz) / 3.0 | ||
|
|
||
| if medium_type == "custom_anisotropic": | ||
|
|
||
| def _custom_medium(val): | ||
| values = factor * val | ||
| data = td.SpatialDataArray(values, coords=coords) | ||
| return td.CustomMedium(permittivity=data) | ||
|
|
||
| medium = td.CustomAnisotropicMedium( | ||
| xx=_custom_medium(eps_vals[0]), | ||
| yy=_custom_medium(eps_vals[1]), | ||
| zz=_custom_medium(eps_vals[2]), | ||
| ) | ||
| elif medium_type == "custom": | ||
|
|
||
| def _custom_isotropic(val): | ||
| values = factor * val | ||
| data = td.SpatialDataArray(values, coords=coords) | ||
| return td.CustomMedium(permittivity=data) | ||
|
|
||
| medium = _custom_isotropic(eps_vals[0]) | ||
| elif medium_type == "isotropic": | ||
| # use first entry; others are identical by construction | ||
| medium = td.Medium(permittivity=eps_vals[0]) | ||
| elif medium_type == "anisotropic": | ||
| medium = td.AnisotropicMedium( | ||
| xx=td.Medium(permittivity=eps_vals[0]), | ||
| yy=td.Medium(permittivity=eps_vals[1]), | ||
| zz=td.Medium(permittivity=eps_vals[2]), | ||
| ) | ||
| else: | ||
| raise ValueError( | ||
| "Medium type has to be one of 'custom', 'isotropic', 'anisotropic' or 'custom_anisotropic'" | ||
| ) | ||
|
|
||
| structure = td.Structure(geometry=box_geom, medium=medium) | ||
| return base_sim.updated_copy(structures=[structure]) | ||
|
|
||
|
|
||
| def _metric_value(case, dataset, freq0): | ||
| if case["objective_kind"] == "flux": | ||
| return dataset.flux.values | ||
| ex_vals = dataset.Ex.values | ||
| ey_vals = dataset.Ey.values | ||
| ez_vals = dataset.Ez.values | ||
| intensity = np.abs(ex_vals) ** 2 + np.abs(ey_vals) ** 2 + np.abs(ez_vals) ** 2 | ||
| return anp.real(anp.mean(intensity)) | ||
|
|
||
|
|
||
| def _angle_deg(vec_a: np.ndarray, vec_b: np.ndarray) -> float: | ||
| norm_a = np.linalg.norm(vec_a) | ||
| norm_b = np.linalg.norm(vec_b) | ||
| if norm_a == 0 or norm_b == 0: | ||
| return np.nan | ||
| cos_theta = np.clip(np.dot(vec_a, vec_b) / (norm_a * norm_b), -1.0, 1.0) | ||
| return float(np.degrees(np.arccos(cos_theta))) | ||
|
|
||
|
|
||
| def _run_simulation( | ||
| case, base_sim, box_geom, eps_vals, label, tmp_path, monitor_name, freq0, gradient | ||
| ): | ||
| sim = _add_medium(case, base_sim, box_geom, eps_vals) | ||
| sim_data = web.run( | ||
| sim, | ||
| task_name=f"medium_grad_{case['name']}_{label}", | ||
| local_gradient=gradient, | ||
| verbose=False, | ||
| path=str(tmp_path / f"{case['name']}_{label}.hdf5"), | ||
| ) | ||
| return _metric_value(case, sim_data[monitor_name], freq0) | ||
|
|
||
|
|
||
| @pytest.mark.numerical | ||
| @pytest.mark.parametrize("case", TEST_CASES, ids=lambda c: c["name"]) | ||
| def test_medium_grads_match_fd(case, numerical_case_dir, tmp_path): | ||
| base_sim, monitor_name, freq0 = _build_base_sim(case) | ||
| box_geom = _box_geometry(case) | ||
| params0 = anp.array(case["permittivities"]) | ||
|
|
||
| def objective(eps_vals): | ||
| return _run_simulation( | ||
| case, | ||
| base_sim, | ||
| box_geom, | ||
| eps_vals, | ||
| label="adjoint", | ||
| tmp_path=tmp_path, | ||
| monitor_name=monitor_name, | ||
| freq0=freq0, | ||
| gradient=True, | ||
| ) | ||
|
|
||
| _, grad_adj = value_and_grad(objective)(params0) | ||
| grad_adj = get_static(grad_adj) | ||
|
|
||
| fd_sims = {} | ||
| base_params = get_static(params0) | ||
| for axis in range(3): | ||
| delta = np.zeros_like(base_params) | ||
| delta[axis] = FD_STEP | ||
| fd_sims[f"fd_plus_{axis}"] = _add_medium(case, base_sim, box_geom, base_params + delta) | ||
| fd_sims[f"fd_minus_{axis}"] = _add_medium(case, base_sim, box_geom, base_params - delta) | ||
|
|
||
| fd_results = web.run_async( | ||
| fd_sims, | ||
| path_dir=str(numerical_case_dir / f"fd_batch_{case['name']}"), | ||
| local_gradient=False, | ||
| verbose=False, | ||
| ) | ||
|
|
||
| grad_fd = np.zeros_like(grad_adj) | ||
| for axis in range(3): | ||
| plus = _metric_value(case, fd_results[f"fd_plus_{axis}"][monitor_name], freq0) | ||
| minus = _metric_value(case, fd_results[f"fd_minus_{axis}"][monitor_name], freq0) | ||
| grad_fd[axis] = (plus - minus) / (2.0 * FD_STEP) | ||
|
|
||
| angle_deg = _angle_deg(grad_adj, grad_fd) | ||
|
|
||
| print( | ||
| f"[medium-grad-test:{case['name']}] adjoint={grad_adj}, " | ||
| f"finite-difference={grad_fd}, angle_deg={angle_deg:.3f}", | ||
| file=sys.stderr, | ||
| ) | ||
|
|
||
| angle_tol = case.get("angle_tol_deg", ANGLE_TOL) | ||
| assert angle_deg <= angle_tol or np.isnan(angle_deg), ( | ||
| f"Gradient angle deviation {angle_deg:.3f} deg exceeds tolerance ({angle_tol}). " | ||
| f"adj={grad_adj}, fd={grad_fd}" | ||
| ) | ||
|
|
||
|
|
||
| @pytest.mark.skip | ||
| @pytest.mark.parametrize("case", TEST_CASES, ids=lambda c: c["name"]) | ||
| def test_medium_fd_step_sweep(case, numerical_case_dir, tmp_path): | ||
| base_sim, monitor_name, freq0 = _build_base_sim(case) | ||
| box_geom = _box_geometry(case) | ||
| params0 = anp.array(case["permittivities"]) | ||
|
|
||
| def objective(eps_vals): | ||
| return _run_simulation( | ||
| case, | ||
| base_sim, | ||
| box_geom, | ||
| eps_vals, | ||
| label="adjoint_sweep", | ||
| tmp_path=tmp_path, | ||
| monitor_name=monitor_name, | ||
| freq0=freq0, | ||
| gradient=True, | ||
| ) | ||
|
|
||
| _, grad_adj = value_and_grad(objective)(params0) | ||
| grad_adj = get_static(grad_adj) | ||
| base_params = get_static(params0) | ||
|
|
||
| sweep_steps = np.logspace(-4, -1, num=9) | ||
| step_labels = [f"{step:.3e}" for step in sweep_steps] | ||
|
|
||
| sweep_runs: dict[str, td.Simulation] = {} | ||
| for step_label, step in zip(step_labels, sweep_steps): | ||
| for axis in range(base_params.size): | ||
| delta = np.zeros_like(base_params) | ||
| delta[axis] = step | ||
| key_base = f"{case['name']}_axis{axis}_{step_label}" | ||
| sweep_runs[f"{key_base}_plus"] = _add_medium( | ||
| case, | ||
| base_sim, | ||
| box_geom, | ||
| base_params + delta, | ||
| ) | ||
| sweep_runs[f"{key_base}_minus"] = _add_medium( | ||
| case, | ||
| base_sim, | ||
| box_geom, | ||
| base_params - delta, | ||
| ) | ||
|
|
||
| sweep_results = web.run_async( | ||
| sweep_runs, | ||
| path_dir=str(numerical_case_dir / f"fd_sweep_{case['name']}"), | ||
| local_gradient=False, | ||
| verbose=False, | ||
| ) | ||
|
|
||
| fd_sweep_matrix = np.zeros((len(sweep_steps), base_params.size), dtype=float) | ||
| for step_idx, (step_label, step) in enumerate(zip(step_labels, sweep_steps)): | ||
| for axis in range(base_params.size): | ||
| plus_key = f"{case['name']}_axis{axis}_{step_label}_plus" | ||
| minus_key = f"{case['name']}_axis{axis}_{step_label}_minus" | ||
| plus_val = _metric_value(case, sweep_results[plus_key][monitor_name], freq0) | ||
| minus_val = _metric_value(case, sweep_results[minus_key][monitor_name], freq0) | ||
| fd_sweep_matrix[step_idx, axis] = (plus_val - minus_val) / (2.0 * step) | ||
|
|
||
| labels = ["xx", "yy", "zz"] | ||
| fig, ax = plt.subplots(figsize=(6, 4)) | ||
| for axis, label in enumerate(labels[: base_params.size]): | ||
| ax.plot(sweep_steps, fd_sweep_matrix[:, axis], marker="o", label=f"{label} (FD)") | ||
| color = ax.get_lines()[-1].get_color() | ||
| ax.axhline( | ||
| grad_adj[axis], | ||
| color=color, | ||
| linestyle="--", | ||
| alpha=0.7, | ||
| label=f"{label} (autograd)", | ||
| ) | ||
|
|
||
| ax.set_xscale("log") | ||
| ax.set_xlabel("Finite difference step") | ||
| ax.set_ylabel("Gradient value") | ||
| ax.set_title(f"FD gradients vs. step size ({case['name']})") | ||
| ax.grid(True, which="both", ls=":") | ||
| ax.legend() | ||
|
|
||
| fig_path = numerical_case_dir / f"medium_fd_step_sweep_{case['name']}.png" | ||
| fig.savefig(fig_path, dpi=200) | ||
| plt.close(fig) | ||
|
|
||
| # FD gradient extrema per parameter (across all step sizes) | ||
| fd_min_per_param = fd_sweep_matrix.min(axis=0) | ||
| fd_max_per_param = fd_sweep_matrix.max(axis=0) | ||
|
|
||
| print( | ||
| ( | ||
| f"[medium-fd-sweep:{case['name']}] " | ||
| f"grad_adj={np.array2string(grad_adj, precision=6, separator=', ')} " | ||
| f"fd_grad_per_param[min,max]=" | ||
| f"{[(f'({mn:.3e},{mx:.3e})') for mn, mx in zip(fd_min_per_param, fd_max_per_param)]}" | ||
| ), | ||
| file=sys.stderr, | ||
| ) |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.