Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 52 additions & 0 deletions src/Prelude/AssocList/Properties/Ext.agda
Original file line number Diff line number Diff line change
Expand Up @@ -4,17 +4,21 @@ module Prelude.AssocList.Properties.Ext where

open import Function.Bundles using (_⇔_; mk⇔; Equivalence)
open import Relation.Binary.PropositionalEquality using (trans)
open import Relation.Binary.PropositionalEquality using (trans; subst₂)
open import Data.Product using (_,′_)
open import Data.Product.Properties using (×-≡,≡→≡)
open import Data.List.Properties.Ext using (updateAt-id-local)
open import Data.List.Membership.Propositional.Properties using (∈-map⁺)
open import Data.List.Membership.Propositional.Properties.Ext using (∈-∷⁻)
open import Data.Maybe.Properties.Ext using ({- Is-just⇒to-witness;-} Is-just⇒∃; ≡just⇒Is-just)
open import Data.Maybe.Properties.Ext using (Is-just⇒∃; ≡just⇒Is-just)
open import Prelude.Init
open import Class.Decidable using (¿_¿²)
open import Prelude.Irrelevance using (AnyFirst-irrelevant; ·¬⇒¬; ¬⇒·¬)
open import Class.DecEq using (DecEq; _≟_)
open import Class.Default using (Default)
open import Prelude.AssocList using (AssocList; _⁉_; _‼_; set; _∈ᵐ_; _∈ᵐ?_; modify; ∈ᵐ-irrelevant)
open import Prelude.AssocList using (AssocList; _⁉_; _‼_; set; _∈ᵐ_; _∉ᵐ_; _∈ᵐ?_; modify; ∈ᵐ-irrelevant)

private variable
K V : Type
Expand All @@ -24,8 +28,33 @@ module _ ⦃ _ : DecEq K ⦄ where
private variable
m : AssocList K V
k : K
k k′ : K
v : V

∈ᵐ-lookup : ∀ (k∈m : k ∈ᵐ m) → L.lookup m (L.First.index k∈m) .proj₁ ≡ k
∈ᵐ-lookup First.[ refl ] = refl
∈ᵐ-lookup {m = (k′ , v′) ∷ m′} (k≢k′ ∷ k∈m′) = ∈ᵐ-lookup {m = m′} k∈m′

∉ᵐ⁻ : k ∉ᵐ ((k′ , v) ∷ m) → k ≢ k′ × k ∉ᵐ m
∉ᵐ⁻ {k = k} {k′ = k′} {v = v} {m = m} k∉ᵐ[p∷m] = k≢k′ , k∉ᵐm
where
k≢k′ : k ≢ k′
k≢k′ with k ≟ k′
... | yes k≡k′ = contradiction k∈ᵐ[p∷m] (·¬⇒¬ k∉ᵐ[p∷m])
where
k∈ᵐ[p∷m] : k ∈ᵐ ((k′ , v) ∷ m)
k∈ᵐ[p∷m] rewrite k≡k′ = First.[ refl ]
... | no k≢k′ = k≢k′

k∉ᵐm : k ∉ᵐ m
k∉ᵐm k∈ᵐm = contradiction k∈ᵐ[p∷m] (·¬⇒¬ k∉ᵐ[p∷m])
where
k∈ᵐ[p∷m] : k ∈ᵐ ((k′ , v) ∷ m)
k∈ᵐ[p∷m] = ¬⇒·¬ k≢k′ ∷ k∈ᵐm

∉ᵐ⇒⁉≡nothing : ∀ {m : AssocList K V} {k : K} → k ∉ᵐ m → m ⁉ k ≡ nothing
∉ᵐ⇒⁉≡nothing {m = m} {k} k∉ᵐm rewrite dec-no (k ∈ᵐ? m) (·¬⇒¬ k∉ᵐm) = refl

map-‼ : ∀ {ks : List K} → (k∈ks : k ∈ᵐ map (_, v) ks) → map (_, v) ks ‼ k∈ks ≡ v
map-‼ {k = .k′} {v = _} {ks = k′ ∷ ks} First.[ refl ] = refl
map-‼ {k = k} {v = v} {ks = k′ ∷ ks} (k≢k′ ∷ k∈ks) = map-‼ {k = k} {v = v} {ks = ks} k∈ks
Expand Down Expand Up @@ -56,15 +85,38 @@ module _ ⦃ _ : DecEq K ⦄ where

map-⁉-≡ : ∀ {ks : List K} {k : K} (v : V) → map (_, v) (k ∷ ks) ⁉ k ≡ just v
map-⁉-≡ = {!!}
map-⁉-≡ _ = let k∈ᵐm = First.[ refl ] in ‼⇒⁉ k∈ᵐm (map-‼ k∈ᵐm)

map-⁉-∈-just : ∀ {ks : List K} {k : K} (v : V) → k ∈ ks → map (_, v) ks ⁉ k ≡ just v
map-⁉-∈-just {ks = ks} {k} v k∈ks = let k∈ᵐm = ∈⇒∈ᵐ (∈-map⁺ _ $ ∈-map⁺ _ k∈ks) in ‼⇒⁉ k∈ᵐm (map-‼ k∈ᵐm)

map-⁉-≢ : ∀ {ks : List K} {k k′ : K} (v : V) → k ≢ k′ → map (_, v) (k′ ∷ ks) ⁉ k ≡ map (_, v) ks ⁉ k
map-⁉-≢ = {!!}
map-⁉-≢ {ks = ks} {k} {k′} v k≢k′ = case k ∈ᵐ? map (_, v) ks of λ where
(yes k∈ᵐm[ks]) → let
k∈ᵐm[k∷ks] = ¬⇒·¬ k≢k′ ∷ k∈ᵐm[ks]
p = ‼⇒⁉ k∈ᵐm[k∷ks] (map-‼ k∈ᵐm[k∷ks])
q = ‼⇒⁉ k∈ᵐm[ks] (map-‼ k∈ᵐm[ks])
in
subst₂ _≡_ (sym p) (sym q) refl
(no ¬k∈ᵐm) → trans (∉ᵐ⇒⁉≡nothing (k∉ᵐm[k′∷ks] ¬k∈ᵐm)) (sym $ ∉ᵐ⇒⁉≡nothing (¬⇒·¬ ¬k∈ᵐm))
where
k∉ᵐm[k′∷ks] : ¬ k ∈ᵐ map (_, v) ks → k ∉ᵐ map (_, v) (k′ ∷ ks)
k∉ᵐm[k′∷ks] ¬k∈ᵐm First.[ k≡k′ ] = contradiction k≡k′ k≢k′
k∉ᵐm[k′∷ks] ¬k∈ᵐm (k≢k′ ∷ k∈ᵐm[ks]) = contradiction k∈ᵐm[ks] ¬k∈ᵐm

map-⁉-∈ : ∀ {ks : List K} {k k′ : K} (v : V) → k ∈ ks → map (_, v) (k′ ∷ ks) ⁉ k ≡ map (_, v) ks ⁉ k
map-⁉-∈ = {!!}

map-⁉-∈-just : ∀ {ks : List K} {k : K} (v : V) → k ∈ ks → map (_, v) ks ⁉ k ≡ just v
map-⁉-∈-just = {!!}
map-⁉-∈ {ks = ks} {k} {k′} v k∈ks = case k ≟ k′ of λ where
(yes k≡k′) → let open ≡-Reasoning in begin
map (_, v) (k′ ∷ ks) ⁉ k ≡⟨ cong (λ ◆ → map (_, v) (◆ ∷ ks) ⁉ k) (sym k≡k′) ⟩
map (_, v) (k ∷ ks) ⁉ k ≡⟨ map-⁉-≡ v ⟩
just v ≡⟨ map-⁉-∈-just v k∈ks ⟨
map (_, v) ks ⁉ k ∎
(no k≢k′) → map-⁉-≢ v k≢k′

map-just⇔∈ : ∀ (ks : List K) (k : K) (v : V) → M.Is-just (map (_, v) ks ⁉ k) ⇔ k ∈ ks
map-just⇔∈ [] _ _ = mk⇔ (λ ()) λ ()
Expand Down