Skip to content

mlx - more changes to tests to pass CI #21415

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: mlx
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
121 changes: 121 additions & 0 deletions examples/demo_custom_mlx_workflow.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
import os

# Set backend env to MLX
os.environ["KERAS_BACKEND"] = "mlx"

import mlx.core as mx
import mlx.nn as nn

from keras import Model
from keras import initializers
from keras import layers
from keras import ops
from keras import optimizers
from keras import Variable


class MyDense(layers.Layer):
def __init__(self, units, name=None):
super().__init__(name=name)
self.units = units

def build(self, input_shape):
input_dim = input_shape[-1]
w_shape = (input_dim, self.units)
w_value = initializers.GlorotUniform()(w_shape)
self.w = Variable(w_value, name="kernel")

b_shape = (self.units,)
b_value = initializers.Zeros()(b_shape)
self.b = Variable(b_value, name="bias")

def call(self, inputs):
return ops.matmul(inputs, self.w) + self.b


class MyModel(Model):
def __init__(self, hidden_dim, output_dim):
super().__init__()
self.dense1 = MyDense(hidden_dim)
self.dense2 = MyDense(hidden_dim)
self.dense3 = MyDense(output_dim)

def call(self, x):
x = nn.relu(self.dense1(x))
x = nn.relu(self.dense2(x))
return self.dense3(x)


def Dataset():
for _ in range(20):
yield (mx.random.normal((32, 128)), mx.random.normal((32, 4)))


def loss_fn(y_true, y_pred):
return ops.sum((y_true - y_pred) ** 2)


model = MyModel(hidden_dim=256, output_dim=4)

optimizer = optimizers.SGD(learning_rate=0.001)
dataset = Dataset()

# Build model
x = mx.random.normal((1, 128))
model(x)
# Build optimizer
optimizer.build(model.trainable_variables)


######### Custom MLX workflow ###############


def compute_loss_and_updates(
trainable_variables, non_trainable_variables, x, y
):
y_pred, non_trainable_variables = model.stateless_call(
trainable_variables, non_trainable_variables, x
)
loss = loss_fn(y, y_pred)
return loss, non_trainable_variables


grad_fn = mx.value_and_grad(compute_loss_and_updates)


@mx.compile
def train_step(state, data):
trainable_variables, non_trainable_variables, optimizer_variables = state
x, y = data
(loss, non_trainable_variables), grads = grad_fn(
trainable_variables, non_trainable_variables, x, y
)
trainable_variables, optimizer_variables = optimizer.stateless_apply(
optimizer_variables, grads, trainable_variables
)
# Return updated state
return loss, (
trainable_variables,
non_trainable_variables,
optimizer_variables,
)


# Pass lists of arrays as state for compiled train_step
trainable_variables = [tv.value for tv in model.trainable_variables]
non_trainable_variables = [ntv.value for ntv in model.non_trainable_variables]
optimizer_variables = [ov.value for ov in optimizer.variables]
state = trainable_variables, non_trainable_variables, optimizer_variables
# Training loop
for data in dataset:
loss, state = train_step(state, data)
print("Loss:", loss)

# Post-processing model state update
trainable_variables, non_trainable_variables, optimizer_variables = state
for variable, value in zip(model.trainable_variables, trainable_variables):
variable.assign(value)
for variable, value in zip(
model.non_trainable_variables, non_trainable_variables
):
variable.assign(value)
30 changes: 26 additions & 4 deletions keras/src/layers/preprocessing/stft_spectrogram_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -96,8 +96,18 @@ def test_spectrogram_channels_broadcasting(self):
for i in range(audio.shape[-1])
]

self.assertAllClose(y_last, np.concatenate(y_singles, axis=-1))
self.assertAllClose(y_expanded, np.stack(y_singles, axis=-1))
if backend.backend() == "mlx":
atol = 1e-5
rtol = 1e-5
else:
atol = 1e-6
rtol = 1e-6
self.assertAllClose(
y_last, np.concatenate(y_singles, axis=-1), atol=atol, rtol=rtol
)
self.assertAllClose(
y_expanded, np.stack(y_singles, axis=-1), atol=atol, rtol=rtol
)

@pytest.mark.skipif(
backend.backend() == "tensorflow",
Expand Down Expand Up @@ -153,11 +163,23 @@ def test_spectrogram_channels_first(self):
)
y_last = layer_last.predict(audio, verbose=0)
y_first = layer_first.predict(np.transpose(audio, [0, 2, 1]), verbose=0)
self.assertAllClose(np.transpose(y_first, [0, 2, 1]), y_last)
self.assertAllClose(y_expanded, np.stack(y_singles, axis=1))
if backend.backend() == "mlx":
atol = 1e-5
rtol = 1e-5
else:
atol = 1e-6
rtol = 1e-6
self.assertAllClose(
np.transpose(y_first, [0, 2, 1]), y_last, atol=atol, rtol=rtol
)
self.assertAllClose(
y_expanded, np.stack(y_singles, axis=1), atol=atol, rtol=rtol
)
self.assertAllClose(
y_first,
np.transpose(np.concatenate(y_singles, axis=-1), [0, 2, 1]),
atol=atol,
rtol=rtol,
)
self.run_layer_test(
layers.STFTSpectrogram,
Expand Down
4 changes: 4 additions & 0 deletions keras/src/ops/nn_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -2504,6 +2504,10 @@ class NNOpsDtypeTest(testing.TestCase):

FLOAT_DTYPES = dtypes.FLOAT_TYPES

if backend.backend() == "mlx":
# activations in mlx have an issue with float64
FLOAT_DTYPES = tuple([ft for ft in FLOAT_DTYPES if ft != "float64"])

def setUp(self):
from jax.experimental import enable_x64

Expand Down
12 changes: 7 additions & 5 deletions keras/src/trainers/trainer_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -625,11 +625,13 @@ def test_fit_flow(self, run_eagerly, jit_compile, use_steps_per_epoch):
def test_fit_with_data_adapter(
self, dataset_type, dataset_kwargs={}, fit_kwargs={}
):
if (
dataset_kwargs.get("use_multiprocessing", False)
and backend.backend() == "jax"
):
pytest.skip("Multiprocessing not supported with JAX backend")
if dataset_kwargs.get(
"use_multiprocessing", False
) and backend.backend() in ["jax", "mlx"]:
# note: multiprocessing works for mlx on Apple silicon
pytest.skip(
"Multiprocessing not supported with JAX and MLX backends"
)

model = ExampleModel(units=3)
optimizer = optimizers.Adagrad()
Expand Down
Loading