Skip to content

koide3/iridescence

Repository files navigation

Iridescence

Iridescence is a light-weight visualization library for rapid prototyping of 3D algorithms. This library is designed for accelerating personal research and development projects (mainly focuing on point-cloud-related algorithms) and is NOT intended to be a general-purpose visualization library with rich rendering capabilities.

Documentation (en), Documentation (日本語), API(C++), API(Python)

ppa PyPI - Version Build on Ubuntu 22.04 / 24.04 and Windows

Features

What this library provides:

  • An easy-to-use 3D visualization framework (inpaticular suitable for rendering point clouds)
  • Tightly integrated Dear ImGui interfaces for rapid UI design

What this library does NOT provide:

  • Realistic rendering and shading
  • Rich textured 3D mesh rendering

See documentation for details.

Dependencies

Installation

C++ : Install from PPA (Ubuntu)

# Install from PPA
sudo add-apt-repository -y ppa:koide3/iridescence
sudo apt install libiridescence-dev

Python : Install from PyPI (Ubuntu and Windows)

Note : Source installation is required for Python 3.14.

# Install from PyPI
pip install pyridescence
Install from source

C++ : Install from source (Ubuntu)

# Install dependencies
sudo apt-get install -y libglm-dev libglfw3-dev libpng-dev libjpeg-dev libeigen3-dev

# Build and install Iridescence
git clone https://github.com/koide3/iridescence --recursive
mkdir iridescence/build && cd iridescence/build
cmake ..
make -j
sudo make install

Python : Install from source

git clone https://github.com/koide3/iridescence --recursive
cd iridescence
pip install .

Usage

C++ : Use Iridescence in your cmake project

# Find package
find_package(Iridescence REQUIRED)

# Add include dirs and link libraries
add_executable(your_program
  src/your_program.cpp
)
target_link_libraries(your_program
  Iridescence::Iridescence
)

C++ : Minimum example

C++:

#include <glk/primitives/primitives.hpp>
#include <guik/viewer/light_viewer.hpp>

int main(int argc, char** argv) {
  // Create a viewer instance (global singleton)
  auto viewer = guik::LightViewer::instance();

  float angle = 0.0f;

  // Register a callback for UI rendering
  viewer->register_ui_callback("ui", [&]() {
    // In the callback, you can call ImGui commands to create your UI.
    // Here, we use "DragFloat" and "Button" to create a simple UI.
    ImGui::DragFloat("Angle", &angle, 0.01f);

    if (ImGui::Button("Close")) {
      viewer->close();
    }
  });

  // Spin the viewer until it gets closed
  while (viewer->spin_once()) {
    // Objects to be rendered are called "drawables" and managed with unique names.
    // Here, solid and wire spheres are registered to the viewer respectively with
    // the "Rainbow" and "FlatColor" coloring schemes.
    // The "Rainbow" coloring scheme encodes the height of each fragment using the
    // turbo colormap by default.
    Eigen::AngleAxisf transform(angle, Eigen::Vector3f::UnitZ());
    viewer->update_drawable("sphere", glk::Primitives::sphere(), guik::Rainbow(transform));
    viewer->update_drawable("wire_sphere", glk::Primitives::wire_sphere(), guik::FlatColor({0.1f, 0.7f, 1.0f, 1.0f}, transform));
  }

  return 0;
}

Python : Minimum example

#!/usr/bin/python3
import numpy
from scipy.spatial.transform import Rotation

from pyridescence import *

# Create a viewer instance (global singleton)
viewer = guik.LightViewer.instance()

angle = 0.0

# Define a callback for UI rendering
def ui_callback():
  # In the callback, you can call ImGui commands to create your UI.
  # Here, we use "DragFloat" and "Button" to create a simple UI.

  global angle
  _, angle = imgui.drag_float('angle', angle, 0.01)

  if imgui.button('close'):
    viewer.close()

# Register a callback for UI rendering
viewer.register_ui_callback('ui', ui_callback)

# Spin the viewer until it gets closed
while viewer.spin_once():
  # Objects to be rendered are called "drawables" and managed with unique names.
  # Here, solid and wire spheres are registered to the viewer respectively with
  # the "Rainbow" and "FlatColor" coloring schemes.
  # The "Rainbow" coloring scheme encodes the height of each fragment using the
  # turbo colormap by default.
  transform = numpy.identity(4)
  transform[:3, :3] = Rotation.from_rotvec([0.0, 0.0, angle]).as_matrix()
  viewer.update_drawable('sphere', glk.primitives.sphere(), guik.Rainbow(transform))
  viewer.update_drawable('wire_sphere', glk.primitives.wire_sphere(), guik.FlatColor(0.1, 0.7, 1.0, 1.0, transform))

example_01

See documentation for details.

Some use examples in my academic works

ral2021 iros2022

License

This package is released under the MIT license.