This repository contains submission for MSCI641 Fake News Challenge Default Project. The trained model files an features are stored in trained.zip. Unzip this to use pretrained model and predict else make a new trained directory and run the main.py file.
git clone https://github.com/manavmehra96/fnc_stance_detection.gitcd fnc_stance_detection && unzip trained.zippip install -r requirements.txtpython main.py --train_feat n --train_model n
git clone https://github.com/manavmehra96/fnc_stance_detection.gitcd fnc_stance_detection && mkdir trainedpip install -r requirements.txtpython main.py --train_feat y --train_model y
main.py [-h] [--train_feat (y/n)] [--train_model (y/n)]
optional arguments:
-h, --help show this help message and exit
--train_feat - Train Features? (y/n)
--train_model - Train Model? (y/n)
The file structure of the repository is as follows -
├── main.py
├── data (dataset)
│ ├─**/*.csv
├── utils
│ ├─*build_model1.py
│ ├─*build_model12.py
│ ├─*features.py
│ ├─*read_data.py
│ ├─*predict.py
│ ├─*prediction.py
│ ├─*score.py
├── output
│ ├─*final_answer.csv
├── trained.zip(all trained models and features)Keras==2.4.3
nltk==3.5
numpy==1.19.0
pandas==1.0.3
scikit-learn==0.23.0
scipy==1.4.1
tensorflow==2.2.0
The experiments were performed using a Tesla T4 GPU, 30GB memory and 8 core CPU
Manav Mehra ([email protected]) Rajbir Singh ([email protected])