Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 15 additions & 16 deletions src/mistral_inference/cache.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,26 +55,25 @@ def update(self, xk: torch.Tensor, xv: torch.Tensor) -> None:

def interleave_kv(self, xk: torch.Tensor, xv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
This is a naive implementation and not optimized for speed.
Optimized implementation of interleave_kv to reduce memory overhead.
"""
assert xk.ndim == xv.ndim == 3 # (B * T, H, D)
assert xk.shape == xv.shape

if all([s == 0 for s in self.metadata.seqlens]):
# No cache to interleave
if all(seqlen == 0 for seqlen in self.metadata.seqlens):
# No data to interleave
return xk, xv

# Make it a list of [(T, H, D)]
xk: Tuple[torch.Tensor] = torch.split(xk, self.metadata.seqlens) # type: ignore
xv: Tuple[torch.Tensor] = torch.split(xv, self.metadata.seqlens) # type: ignore
assert len(xk) == len(self.kv_seqlens), f"Batch size is {len(self.kv_seqlens)}, got {len(xk)}"

# Retrieve cache
cache_k = [cache_k[:seq_len] for cache_k, seq_len in zip(self.cache_k, self.kv_seqlens)]
cache_v = [cache_v[:seq_len] for cache_v, seq_len in zip(self.cache_v, self.kv_seqlens)]

interleaved_k = interleave_list(cache_k, list(xk))
interleaved_v = interleave_list(cache_v, list(xv))
# Efficiently split the tensors based on seqlens
xk_splits = torch.split(xk, self.metadata.seqlens)
xv_splits = torch.split(xv, self.metadata.seqlens)

# Retrieve cached values up to the valid sequence length
cache_k_splits = [cache_k[:seq_len] for cache_k, seq_len in zip(self.cache_k, self.kv_seqlens)]
cache_v_splits = [cache_v[:seq_len] for cache_v, seq_len in zip(self.cache_v, self.kv_seqlens)]

interleaved_k = [item for pair in zip(cache_k_splits, xk_splits) for item in pair]
interleaved_v = [item for pair in zip(cache_v_splits, xv_splits) for item in pair]

return torch.cat(interleaved_k, dim=0), torch.cat(interleaved_v, dim=0)

Expand Down Expand Up @@ -198,4 +197,4 @@ def get_input_metadata(self, seqlens: List[int]) -> CacheInputMetadata:
prefill=first_prefill or subsequent_prefill,
mask=mask,
seqlens=seqlens,
)
)