@@ -155,15 +155,87 @@ Definition nm f := fine ('N[mu]_p%:E[f]).
155155
156156Lemma ler_Lnorm_add (f g : ty) :
157157 nm (f \+ g) <= nm f + nm g.
158+ Proof .
159+ rewrite /nm.
160+ have : (-oo < 'N[mu]_p%:E[f])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)).
161+ have : (-oo < 'N[mu]_p%:E[g])%E by exact: (lt_le_trans ltNy0 (Lnorm_ge0 _ _ _)).
162+ rewrite !ltNye_eq => /orP[f_fin /orP[g_fin|/eqP foo]|/eqP goo].
163+ - rewrite -fineD ?fine_le//.
164+ - admit.
165+ - by rewrite fin_numD f_fin g_fin//.
166+ rewrite minkowski//. admit. admit. admit.
167+ - rewrite foo/= add0r.
168+ have : ('N[mu]_p%:E[f] <= 'N[mu]_p%:E[(f \+ g)])%E.
169+ rewrite unlock /Lnorm.
170+ rewrite {1}(@ifF _ (p == 0)).
171+ rewrite {1}(@ifF _ (p == 0)).
172+ rewrite gt0_ler_poweR.
173+ - by [].
174+ - admit.
175+ - admit.
176+ - admit.
177+ rewrite ge0_le_integral//.
178+ - move => x _. rewrite lee_fin powR_ge0//.
179+ - admit.
180+ - move => x _. rewrite lee_fin powR_ge0//.
181+ - admit.
182+ - move => x _. rewrite lee_fin gt0_ler_powR//. admit. (* rewrite normr_le. *)
183+
158184Admitted .
159185
160- Lemma Lnorm_eq0 f : nm f = 0 -> f = 0.
186+ Lemma natmulfctE (U : pointedType) (K : ringType) (f : U -> K) n :
187+ f *+ n = (fun x => f x *+ n).
188+ Proof . by elim: n => [//|n h]; rewrite funeqE=> ?; rewrite !mulrSr h. Qed .
189+
190+
191+ Lemma Lnorm_eq0 f : nm f = 0 -> {ae mu, f =1 0}.
192+ rewrite /nm => /eqP.
193+ rewrite fine_eq0; last first. admit.
194+ move/eqP/Lnorm_eq0_eq0.
195+ (* ale: I don't think it holds almost everywhere equal does not mean equal *
196+ rewrite unlock /Lnorm ifF.
197+ rewrite poweR_eq0.
198+ rewrite integral_abs_eq0. *)
161199Admitted .
162200
163201Lemma Lnorm_natmul f k : nm (f *+ k) = nm f *+ k.
202+ rewrite /nm unlock /Lnorm.
203+ case: (ifP (p == 0)).
204+ admit.
205+
206+ move => p0.
207+ under eq_integral => x _.
208+ rewrite -mulr_natr/=.
209+ rewrite fctE (_ : k%:R _ = k%:R); last by rewrite natmulfctE.
210+ rewrite normrM powRM//=.
211+ rewrite mulrC EFinM.
212+ over.
213+ rewrite /=.
214+ rewrite integralZl//; last first. admit.
215+ rewrite poweRM; last 2 first.
216+ - by rewrite lee_fin powR_ge0.
217+ - by rewrite integral_ge0// => x _; rewrite lee_fin powR_ge0.
218+
219+ rewrite poweR_EFin -powRrM mulfV; last admit.
220+ rewrite powRr1//.
221+ rewrite fineM//; last admit.
222+ rewrite mulrC.
223+
164224Admitted .
165225
166226Lemma LnormN f : nm (-f) = nm f.
227+ rewrite /nm.
228+ congr (fine _).
229+ rewrite unlock /Lnorm.
230+ case: ifP.
231+ move=> p0.
232+ admit.
233+
234+ move=> p0.
235+ congr (_ `^ _)%E.
236+ apply eq_integral => x _.
237+ congr ((_ `^ _)%:E).
238+ by rewrite normrN.
167239Admitted .
168240
169241(*
0 commit comments