Skip to content

neosun100/remove-noise-service

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Audio Noise Removal Service - All-in-One

Docker Hub License

AI-powered audio noise removal service with Swagger API documentation. Built on ResembleAI's DeepFilterNet model.

🚀 Quick Start

# Pull the all-in-one image
docker pull neosun/noise-removal:v1.0-allinone

# Run the service
docker run -d \
  --name noise-removal \
  --gpus all \
  -p 5080:5080 \
  neosun/noise-removal:v1.0-allinone

# Wait 30 seconds for service to start
# Access Swagger UI: http://0.0.0.0:5080/docs/

That's it! No build required, no external dependencies, everything is included.

📚 API Documentation

🎯 Features

  • All-in-One Image: Pre-loaded DeepFilterNet model (9.25GB)
  • Zero Configuration: Works out of the box
  • Swagger Documentation: Interactive API docs
  • GPU Accelerated: CUDA 12.4 support
  • Async Processing: Support for long audio files
  • Health Monitoring: Built-in health check

🛠️ Requirements

Hardware

  • GPU: NVIDIA GPU with 4GB+ VRAM
  • RAM: 8GB+ recommended

Software

  • NVIDIA Driver: 525.60.13+
  • Docker: 20.10+
  • NVIDIA Container Toolkit: Required

📋 API Usage

Synchronous Processing

curl -X POST http://0.0.0.0:5080/api \
  -F "audio=@noisy_audio.wav" \
  -o clean_audio.wav

Python Example

import requests

url = "http://0.0.0.0:5080/api"
files = {"audio": open("noisy_audio.wav", "rb")}
response = requests.post(url, files=files)

with open("clean_audio.wav", "wb") as f:
    f.write(response.content)

🎨 Supported Formats

WAV, MP3, FLAC, OGG, M4A

📊 Performance

  • Speed: ~10x faster than real-time on L40S GPU
  • Memory: ~2GB VRAM per request
  • Startup: <5 seconds

📄 License

MIT License


Docker Hub: https://hub.docker.com/r/neosun/noise-removal

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •