AI-powered audio noise removal service with Swagger API documentation. Built on ResembleAI's DeepFilterNet model.
# Pull the all-in-one image
docker pull neosun/noise-removal:v1.0-allinone
# Run the service
docker run -d \
--name noise-removal \
--gpus all \
-p 5080:5080 \
neosun/noise-removal:v1.0-allinone
# Wait 30 seconds for service to start
# Access Swagger UI: http://0.0.0.0:5080/docs/That's it! No build required, no external dependencies, everything is included.
- Swagger UI: http://0.0.0.0:5080/docs/
- API Spec: http://0.0.0.0:5080/swagger.json
- Health Check: http://0.0.0.0:5080/health
- ✅ All-in-One Image: Pre-loaded DeepFilterNet model (9.25GB)
- ✅ Zero Configuration: Works out of the box
- ✅ Swagger Documentation: Interactive API docs
- ✅ GPU Accelerated: CUDA 12.4 support
- ✅ Async Processing: Support for long audio files
- ✅ Health Monitoring: Built-in health check
- GPU: NVIDIA GPU with 4GB+ VRAM
- RAM: 8GB+ recommended
- NVIDIA Driver: 525.60.13+
- Docker: 20.10+
- NVIDIA Container Toolkit: Required
curl -X POST http://0.0.0.0:5080/api \
-F "audio=@noisy_audio.wav" \
-o clean_audio.wavimport requests
url = "http://0.0.0.0:5080/api"
files = {"audio": open("noisy_audio.wav", "rb")}
response = requests.post(url, files=files)
with open("clean_audio.wav", "wb") as f:
f.write(response.content)WAV, MP3, FLAC, OGG, M4A
- Speed: ~10x faster than real-time on L40S GPU
- Memory: ~2GB VRAM per request
- Startup: <5 seconds
MIT License
Docker Hub: https://hub.docker.com/r/neosun/noise-removal