This repository demonstrates how to organize multiple Outerbounds projects in a single repository using the obproject_multi.toml configuration file.
.
├── obproject_multi.toml # Multi-project manifest
├── ml-infra/ # ML Infrastructure project
│ ├── obproject.toml
│ └── flows/
│ └── test/
│ └── flow.py
└── services/ # MLOps Services project
├── obproject.toml
└── deployments/
├── api/
│ ├── main.py
│ └── config.yml
└── bi-dashboard/
├── app.py
└── config.yml
Contains Metaflow workflows for machine learning pipelines and data processing.
Contains deployed applications:
- API: FastAPI service for model serving
- BI Dashboard: Streamlit dashboard for business intelligence
obproject-deployobproject-deploy --project ml_infra
obproject-deploy --project mlops_servicesThe repository includes CI/CD configurations for:
- GitHub Actions (
.github/workflows/deploy.yml) - Azure DevOps (
azure-pipelines.yml)
For CI/CD deployments, set:
CONTINUE_ON_ERROR=1to continue deploying other projects if one failsSPEC_ONLY=1to only generate project specifications without deploying