-
Notifications
You must be signed in to change notification settings - Fork 0
Bibliography
Alex edited this page Jan 23, 2015
·
30 revisions
Contents
- Classical & Analytical Mechanics
- Gauge Systems
- Reduced Phase Space
- Yang-Mills
- Chern-Simons
- General Relativity
- Spin-2 Formalism
- Newton-Cartan Formalism
- Canonical Formalism
- Mathematical Relativity 1. Positive Mass Theorem 2. Positive Energy Theorem 3. Energy Conditions
- Numerical Relativity
- Empirical Analysis
- Alternatives
- Quantum Mechanics
- S-Matrix Stuff
- Quantum Field Theory
- Schrodinger Picture
- Quantum Fields in Curved Spacetime
- Renormalization 1. Renormalization Group 2. Asymptotic Safety
- Quantization of Gauge Systems
- Mathematics
- Collections of Lectures
- David Morin's book, I highly don't recommend it --- but I was forced to obtain a copy for a course.
- Peter Lynch, "The Not-so-simple Pendulum: Balancing a Pencil on its Point". Eprint arXiv:1406.1125 discusses how badly Morin botched his explanations of classical behaviour, demonstrating further Morin doesn't understand the classical limit of quantum systems. (C.f., Morin's exercise 3.13, he remarks "This smallness of this answer is quite amazing. It is remarkable that a quantum effect on a macroscopic object can produce an everyday value for a time scale.")
There is a lot of references I could put down, so instead I'll just mark up my "to read" list.
## Spin-2 Formalism 1. Jessica Frank, Michael Rauch, Dieter Zeppenfeld, "Spin-2 Resonances in Vector-Boson-Fusion Processes at NLO QCD". *Phys. Rev. D* **87** (2013) 055020 (2013). Eprint [arXiv:1211.3658](http://arxiv.org/abs/1211.3658) DOI:[10.1103/PhysRevD.87.055020](http://dx.doi.org/10.1103/PhysRevD.87.055020) 2. Yurij V. Baryshev, "Field Theory of Gravitation: Desire and Reality". *Gravitation* **2** (1996) 69-81. Eprint [arXiv:gr-qc/9912003](http://arxiv.org/abs/gr-qc/9912003), 17 pages 3. T. Padmanabhan, "From Gravitons to Gravity: Myths and Reality". *Int.J.Mod.Phys.D* **17** (2008) 367-398. Eprint [arXiv:gr-qc/0409089](http://arxiv.org/abs/gr-qc/0409089). DOI:[10.1142/S0218271808012085](http://dx.doi.org/10.1142/S0218271808012085). ## Spinors in GR 1. Jorge G. Cardoso, "The Classical World and Spinor Formalisms of General Relativity". Eprint [arXiv:1004.5150](http://arxiv.org/abs/1004.5150), 77pp. ## Newton-Cartan Formalism- Roel Andringa, Eric Bergshoeff, Sudhakar Panda, M. de Roo, "Newtonian Gravity and the Bargmann Algebra". Class.Quant.Grav. 28 (2011) 105011, arXiv:1011.1145
- Joy Christian, "Exactly Soluble Sector of Quantum Gravity". Phys.Rev.D 56 (1997) 4844-4877, arXiv:gr-qc/9701013
Just as lisp has "util functions", helper functions that enable one to write programs, I'll collate some "helper papers".
- Francesco Bonsante, Andrea Seppi, "On Codazzi tensors on a hyperbolic surface and flat Lorentzian geometry". Eprint arXiv:1501.04922, 49 pages.
- Leo Brewin, "A simple expression for the ADM mass". Gen.Rel.Grav. 39 (2007) 521-528, arXiv:gr-qc/0609079
- Christopher Nerz, "Time evolution of ADM and CMC center of mass in general relativity". Eprint arXiv:1312.6274
- Levi Lopes de Lima, Frederico Girão, "The ADM mass of asymptotically flat hypersurfaces". Eprint arXiv:1108.5474, 20 pages.
- J.L. Jaramillo, E. Gourgoulhon, "Mass and Angular Momentum in General Relativity". Eprint arXiv:1001.5429, 41 pages.
- Peter Arnold, Paul Romatschke, Wilke van der Schee, "Absence of a local rest frame in far from equilibrium quantum matter". Eprint arXiv:1408.2518, 5 pages.
- Qingchun Ji, Ke Zhu, "Solvability of the Dirac equation". Eprint arXiv:1407.6936
- D.S. Kaparulin, S.L. Lyakhovich, A.A. Sharapov, "Classical and quantum stability of higher-derivative dynamics". Eprint arXiv:1407.8481, 39 pages.
- Jens Braun, Holger Gies, Daniel D. Scherer, "Asymptotic safety: a simple example". Phys.Rev.D 83 (2011) 085012. Eprint arXiv:1011.1456 DOI:10.1103/PhysRevD.83.085012
- J. Kovacs, S. Nagy, K. Sailer, "Asymptotic safety in the sine-Gordon model". Eprint arXiv:1408.2680, 8 pages.
- Björn H. Wellegehausen, Daniel Körner, Andreas Wipf, "Asymptotic safety on the lattice: The Nonlinear O(N) Sigma Model". Eprint arXiv:1402.1851, 16 pages.
- Daniel F. Litim, Francesco Sannino, "Asymptotic safety guaranteed". Eprint arXiv:1406.2337, 31 pages.
- Alessandro Codello, YouTube lecture "Introduction to asymptotic safety", 1hr14min. Given at CP3 at the University of Southern Denmark, 28 August 2014.
- P. Donà, Astrid Eichhorn, Roberto Percacci, "Consistency of matter models with asymptotically safe quantum gravity". Will be in the Proceedings of Theory Canada 9, eprint arXiv:1410.4411. Constrains the possible choices of matter (esp. spin-3/2 particles) assuming gravity is asymptotically safe.
- Pietro Donà, Astrid Eichhorn, Roberto Percacci "Matter matters in asymptotically safe quantum gravity". Eprint arXiv:1311.2898 [hep-th]
- Henneaux and Teitelboim's Quantization of Gauge Systems
- Waldemar Schulgin, Jan Troost, "The Algebra of Diffeomorphisms from the World Sheet". Eprint arXiv:1407.1385 [hep-th]
Remember geometric quantization weakens the condition that Poisson brackets are "quantized" into commutators.
- M.Nakamura, "Star-product Quantization in Second-class Constraint Systems". Eprint arXiv:1108.4108
- Alexander Plakhov, "Newton's problem of minimal resistance under the single-impact assumption". Eprint arXiv:1405.0122
- Andreas Kriegl, Peter W. Michor, Armin Rainer, "An exotic zoo of diffeomorphism groups on Rn". Eprint arXiv:1404.7033
- Arthur Besse, Einstein Manifolds. Springer-Verlag, 1987.
- Fernando Galaz-Garcia, Luis Guijarro, "Every point in a Riemmanian manifold is critical". Eprint arXiv:1408.4777, 7 pages.
- Jan Milan Eyni, "The Frobenius theorem for Banach distributions on infinite-dimensional manifolds and applications in infinite-dimensional Lie theory". Eprint arXiv:1407.3166 [math.GR]
- Karl-Hermann Neeb, "Semibounded representations and invariant cones in infinite dimensional Lie algebras". Eprint arXiv:0911.4412
- Yuri Neretin, "Structures of boson and fermion Fock spaces in the space of symmetric functions". Acta Applicandae Mathematica 81 no.1 (2004) e233-268, Eprint arXiv:math-ph/0306077
- Yuri Neretin, "A remark on representations of infinite symmetric groups". J. Math. Sci. 190 (2013) 464--467, Eprint arXiv:1204.4198
- Iztok Banic, "Integrations on rings". Eprint arXiv:1406.3061, 15 pages.
- Irving Segal, "Algebraic integration theory". Bull. Amer. Math. Soc. 71 No. 3 (1965), 419-489. Eprint