Skip to content

[bc-breaking] Generalize FakeQuantizeConfig beyond intx #2628

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Aug 1, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -180,9 +180,9 @@ Post-training quantization can result in a fast and compact model, but may also

```python
from torchao.quantization import quantize_
from torchao.quantization.qat import FakeQuantizeConfig, IntXQuantizationAwareTrainingConfig
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
from torchao.quantization.qat import IntxFakeQuantizeConfig, IntXQuantizationAwareTrainingConfig
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
quantize_(my_model, qat_config)
```
Expand Down
2 changes: 1 addition & 1 deletion docs/source/api_ref_qat.rst
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ Custom QAT APIs
:toctree: generated/
:nosignatures:

FakeQuantizeConfig
IntxFakeQuantizeConfig
FakeQuantizedLinear
FakeQuantizedEmbedding
FakeQuantizer
Expand Down
4 changes: 2 additions & 2 deletions test/prototype/test_parq.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,8 @@
from torchao.prototype.parq.quant.uniform_torchao import _BIT_WIDTH_TO_DTYPE
from torchao.quantization.granularity import PerGroup
from torchao.quantization.qat import (
FakeQuantizeConfig,
FromIntXQuantizationAwareTrainingConfig,
IntxFakeQuantizeConfig,
IntXQuantizationAwareTrainingConfig,
)
from torchao.quantization.quant_api import (
Expand Down Expand Up @@ -393,7 +393,7 @@ def test_int8_dynamic_activation_intx_e2e(
optimizer.step()

# apply torchao quantized activations on top
activation_config = FakeQuantizeConfig(
activation_config = IntxFakeQuantizeConfig(
torch.int8,
granularity="per_token",
mapping_type=config.act_mapping_type,
Expand Down
173 changes: 90 additions & 83 deletions test/quantization/test_qat.py

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions torchao/experimental/tests/test_embedding_xbit_quantizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,9 +21,9 @@
)
from torchao.quantization.granularity import PerAxis, PerGroup
from torchao.quantization.qat import (
FakeQuantizeConfig,
FromIntXQuantizationAwareTrainingConfig,
Int4WeightOnlyEmbeddingQATQuantizer,
IntxFakeQuantizeConfig,
IntXQuantizationAwareTrainingConfig,
)
from torchao.quantization.quant_api import (
Expand Down Expand Up @@ -282,7 +282,7 @@ def test_identical_to_IntXQuantizationAwareTrainingConfig(
)

embedding_filter = lambda m, fqn: isinstance(m, torch.nn.Embedding)
weight_config = FakeQuantizeConfig(
weight_config = IntxFakeQuantizeConfig(
weight_dtype,
group_size=group_size,
is_symmetric=is_symmetric,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,9 @@
from torchao.dtypes import PackedLinearInt8DynamicActivationIntxWeightLayout, QDQLayout
from torchao.quantization.granularity import PerAxis, PerGroup
from torchao.quantization.qat import (
FakeQuantizeConfig,
FromIntXQuantizationAwareTrainingConfig,
Int8DynActInt4WeightQATQuantizer,
IntxFakeQuantizeConfig,
IntXQuantizationAwareTrainingConfig,
)
from torchao.quantization.quant_api import (
Expand Down Expand Up @@ -538,12 +538,12 @@ def test_identical_to_IntXQuantizationAwareTrainingConfig(
model = model.to(model_dtype)
activations = activations.to(model_dtype)

activation_config = FakeQuantizeConfig(
activation_config = IntxFakeQuantizeConfig(
torch.int8,
"per_token",
is_symmetric=is_act_symmetric,
)
weight_config = FakeQuantizeConfig(
weight_config = IntxFakeQuantizeConfig(
weight_dtype,
group_size=group_size,
is_symmetric=is_symmetric,
Expand Down
12 changes: 6 additions & 6 deletions torchao/quantization/qat/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def train_loop(m: torch.nn.Module):

The recommended way to run QAT in torchao is through the `quantize_` API:
1. **Prepare:** specify how weights and/or activations are to be quantized through
[`FakeQuantizeConfig`](https://docs.pytorch.org/ao/main/generated/torchao.quantization.qat.FakeQuantizeConfig.html#torchao.quantization.qat.FakeQuantizeConfig) and passing these to [`IntXQuantizationAwareTrainingConfig`](https://docs.pytorch.org/ao/main/generated/torchao.quantization.qat.IntXQuantizationAwareTrainingConfig.html#torchao.quantization.qat.IntXQuantizationAwareTrainingConfig)
[`IntxFakeQuantizeConfig`](https://docs.pytorch.org/ao/main/generated/torchao.quantization.qat.IntxFakeQuantizeConfig.html#torchao.quantization.qat.IntxFakeQuantizeConfig) and passing these to [`IntXQuantizationAwareTrainingConfig`](https://docs.pytorch.org/ao/main/generated/torchao.quantization.qat.IntXQuantizationAwareTrainingConfig.html#torchao.quantization.qat.IntXQuantizationAwareTrainingConfig)
2. **Convert:** quantize the model using the standard post-training quantization (PTQ)
functions such as [`Int8DynamicActivationInt4WeightConfig`](https://docs.pytorch.org/ao/main/generated/torchao.quantization.Int8DynamicActivationInt4WeightConfig.html#torchao.quantization.Int8DynamicActivationInt4WeightConfig)

Expand All @@ -84,16 +84,16 @@ from torchao.quantization import (
Int8DynamicActivationInt4WeightConfig,
)
from torchao.quantization.qat import (
FakeQuantizeConfig,
IntxFakeQuantizeConfig,
FromIntXQuantizationAwareTrainingConfig,
IntXQuantizationAwareTrainingConfig,
)
model = get_model()

# prepare: insert fake quantization ops
# swaps `torch.nn.Linear` with `FakeQuantizedLinear`
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
quantize_(
model,
IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
Expand All @@ -116,8 +116,8 @@ the following with a filter function during the prepare step:

```
# first apply linear transformation to the model as above
activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = FakeQuantizeConfig(torch.int4, group_size=32)
activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False)
weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32)
quantize_(
model,
IntXQuantizationAwareTrainingConfig(activation_config, weight_config),
Expand Down
13 changes: 10 additions & 3 deletions torchao/quantization/qat/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,5 @@
from .api import (
ComposableQATQuantizer,
FakeQuantizeConfig,
FromIntXQuantizationAwareTrainingConfig,
IntXQuantizationAwareTrainingConfig,
from_intx_quantization_aware_training,
Expand All @@ -11,6 +10,11 @@
FakeQuantizedEmbedding,
Int4WeightOnlyEmbeddingQATQuantizer,
)
from .fake_quantize_config import (
FakeQuantizeConfig,
FakeQuantizeConfigBase,
IntxFakeQuantizeConfig,
)
from .fake_quantizer import FakeQuantizer
from .linear import (
FakeQuantizedLinear,
Expand All @@ -21,7 +25,7 @@

__all__ = [
"ComposableQATQuantizer",
"FakeQuantizeConfig",
"FakeQuantizeConfigBase",
"FakeQuantizedLinear",
"FakeQuantizedEmbedding",
"FakeQuantizer",
Expand All @@ -30,8 +34,11 @@
"Int4WeightOnlyEmbeddingQATQuantizer",
"Int4WeightOnlyQATQuantizer",
"Int8DynActInt4WeightQATQuantizer",
"IntxFakeQuantizeConfig",
"IntXQuantizationAwareTrainingConfig",
"initialize_fake_quantizers",
"intx_quantization_aware_training",
# for BC
"FakeQuantizeConfig",
"from_intx_quantization_aware_training",
"intx_quantization_aware_training",
]
Loading
Loading