-
Notifications
You must be signed in to change notification settings - Fork 311
Deprecate old QAT APIs #2641
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Deprecate old QAT APIs #2641
Conversation
**Summary:** The existing `FakeQuantizeConfig` performs only intx quantization, but we plan to extend QAT to other dtypes such as fp8 and nvfp4 in the near future. This is the necessary refactor before that. Specifically: ``` # New abstract class FakeQuantizeConfigBase # Rename FakeQuantizeConfig -> IntxFakeQuantizeConfig ``` In the future, we will have other types of `FakeQuantizeConfigBase` for float dtypes that users can pass in instead of the existing Intx one. **BC-breaking notes:** For BC, we keep around the old names to reference the new ones. However, this commit is still BC-breaking in the sense that a few APIs now accept the abstract `FakeQuantizeConfigBase` instead. For the most part, this abstract class will be hidden from the user. Before: ``` activation_config = FakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = FakeQuantizeConfig(torch.int4, group_size=32) ``` After: ``` activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) ``` **Test Plan:** python test/quantization/test_qat.py [ghstack-poisoned]
**Summary:** This commit adds a new multi-step QAT API with the main goal of simplifying the existing UX. The new API uses the same `QATConfig` for both the prepare and convert steps, and automatically infers the fake quantization configs based on a PTQ base config provided by the user: ``` from torchao.quantization import ( quantize_, Int8DynamicActivationInt4WeightConfig ) from torchao.quantization.qat import QATConfig \# prepare base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) qat_config = QATConfig(base_config, step="prepare") quantize_(m, qat_config) \# train (not shown) \# convert quantize_(m, QATConfig(base_config, step="convert")) ``` The main improvements include: - A single config for both prepare and convert steps - A single quantize_ for convert (instead of 2) - No chance for incompatible prepare vs convert configs - Much less boilerplate code for most common use case - Simpler config names For less common use cases such as experimentation, users can still specify arbitrary fake quantization configs for activations and/or weights as before. This is still important since there may not always be a corresponding PTQ base config. For example: ``` from torchao.quantization import quantize_ from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) \# train and convert same as above (not shown) ``` **BC-breaking notes:** This change by itself is technically not BC-breaking since we keep around the old path, but will become so when we deprecate and remove the old path in the future. Before: ``` \# prepare activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config), quantize_(model, qat_config) \# train (not shown) \# convert quantize_(model, FromIntXQuantizationAwareTrainingConfig()) quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32)) ``` After: (see above) **Test Plan:** ``` python test/quantization/test_qat.py ``` [ghstack-poisoned]
**Summary:** This commit adds a new multi-step QAT API with the main goal of simplifying the existing UX. The new API uses the same `QATConfig` for both the prepare and convert steps, and automatically infers the fake quantization configs based on a PTQ base config provided by the user: ``` from torchao.quantization import ( quantize_, Int8DynamicActivationInt4WeightConfig ) from torchao.quantization.qat import QATConfig # prepare base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(m, QATConfig(base_config, step="prepare")) # train (not shown) # convert quantize_(m, QATConfig(base_config, step="convert")) ``` The main improvements include: - A single config for both prepare and convert steps - A single quantize_ for convert (instead of 2) - No chance for incompatible prepare vs convert configs - Much less boilerplate code for most common use case - Simpler config names For less common use cases such as experimentation, users can still specify arbitrary fake quantization configs for activations and/or weights as before. This is still important since there may not always be a corresponding PTQ base config. For example: ``` from torchao.quantization import quantize_ from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig # prepare activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) # train and convert same as above (not shown) ``` **BC-breaking notes:** This change by itself is technically not BC-breaking since we keep around the old path, but will become so when we deprecate and remove the old path in the future. Before: ``` # prepare activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config), quantize_(model, qat_config) # train (not shown) # convert quantize_(model, FromIntXQuantizationAwareTrainingConfig()) quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32)) ``` After: (see above) **Test Plan:** ``` python test/quantization/test_qat.py ``` [ghstack-poisoned]
**Summary:** This commit adds a new multi-step QAT API with the main goal of simplifying the existing UX. The new API uses the same `QATConfig` for both the prepare and convert steps, and automatically infers the fake quantization configs based on a PTQ base config provided by the user: ``` from torchao.quantization import ( quantize_, Int8DynamicActivationInt4WeightConfig ) from torchao.quantization.qat import QATConfig # prepare base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(m, QATConfig(base_config, step="prepare")) # train (not shown) # convert quantize_(m, QATConfig(base_config, step="convert")) ``` The main improvements include: - A single config for both prepare and convert steps - A single quantize_ for convert (instead of 2) - No chance for incompatible prepare vs convert configs - Much less boilerplate code for most common use case - Simpler config names For less common use cases such as experimentation, users can still specify arbitrary fake quantization configs for activations and/or weights as before. This is still important since there may not always be a corresponding PTQ base config. For example: ``` from torchao.quantization import quantize_ from torchao.quantization.qat import IntxFakeQuantizeConfig, QATConfig # prepare activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) # train and convert same as above (not shown) ``` **BC-breaking notes:** This change by itself is technically not BC-breaking since we keep around the old path, but will become so when we deprecate and remove the old path in the future. Before: ``` # prepare activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = IntXQuantizationAwareTrainingConfig(activation_config, weight_config), quantize_(model, qat_config) # train (not shown) # convert quantize_(model, FromIntXQuantizationAwareTrainingConfig()) quantize_(model, Int8DynamicActivationInt4WeightConfig(group_size=32)) ``` After: (see above) **Test Plan:** ``` python test/quantization/test_qat.py ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` [ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/ao/2641
Note: Links to docs will display an error until the docs builds have been completed. ✅ You can merge normally! (2 Unrelated Failures)As of commit 3f06429 with merge base 5f3ab63 ( BROKEN TRUNK - The following jobs failed but were present on the merge base:👉 Rebase onto the `viable/strict` branch to avoid these failures
This comment was automatically generated by Dr. CI and updates every 15 minutes. |
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: f6988d7 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: f6988d7 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: ac1b30e Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: bb3fc80 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: bb3fc80 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 58738f1 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 58738f1 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 7e0bda7 Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: ad4bd4e Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 1961c9c Pull Request resolved: #2641
_LOGGED_DEPRECATED_CLASSES.add(old_api_object.__class__) | ||
logger = logging.getLogger(old_api_object.__module__) | ||
logger.warning( | ||
"""'%s' is deprecated and will be removed in a future release. Please use the following API instead: |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
is there a concrete time for deprecation?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
yeah it's in the issue, deprecated this version (0.13.0) and removed the next (0.14.0)
@@ -256,9 +257,13 @@ class IntXQuantizationAwareTrainingConfig(AOBaseConfig): | |||
activation_config: Optional[FakeQuantizeConfigBase] = None | |||
weight_config: Optional[FakeQuantizeConfigBase] = None | |||
|
|||
def __post_init__(self): |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I heard typing_extensions.deprecated is more IDE friendly: pytorch/pytorch#153892 (comment)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
hmm I don't think torchao has a dependency on typing_extensions
? Do we want to add a new one for this?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I see, OK probably not worth to add deps since it looks like right now there is no deps for torchao
torchao/quantization/qat/utils.py
Outdated
|
||
|
||
# log deprecation warning only once per class | ||
_LOGGED_DEPRECATED_CLASSES = set[type]() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
actually I'm also looking at how to do warning once, does warnings.warn
work for you?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the global set approach is the only way to do it
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
it seems that warnings.warn by default only prints once though? https://docs.python.org/3/library/warnings.html#the-warnings-filter
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Looks like I was able to get warnings.warn
to log only once, updated
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 7ac9f3b Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 7ac9f3b Pull Request resolved: #2641
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` >>> from torchao.quantization.qat import IntXQuantizationAwareTrainingConfig >>> IntXQuantizationAwareTrainingConfig() 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` [ghstack-poisoned]
**Summary:** Deprecates QAT APIs that should no longer be used. Print helpful deprecation warning to help users migrate. **Test Plan:** ``` python test/quantization/test_qat.py -k test_qat_api_deprecation ``` Also manual testing: ``` 'IntXQuantizationAwareTrainingConfig' is deprecated and will be removed in a future release. Please use the following API instead: base_config = Int8DynamicActivationInt4WeightConfig(group_size=32) quantize_(model, QATConfig(base_config, step="prepare")) # train (not shown) quantize_(model, QATConfig(base_config, step="convert")) Alternatively, if you prefer to pass in fake quantization configs: activation_config = IntxFakeQuantizeConfig(torch.int8, "per_token", is_symmetric=False) weight_config = IntxFakeQuantizeConfig(torch.int4, group_size=32) qat_config = QATConfig( activation_config=activation_config, weight_config=weight_config, step="prepare", ) quantize_(model, qat_config) Please see #2630 for more details. IntXQuantizationAwareTrainingConfig(activation_config=None, weight_config=None) ``` ghstack-source-id: 33a6f38 Pull Request resolved: #2641
Stack from ghstack (oldest at bottom):
Summary: Deprecates QAT APIs that should no longer be used.
Print helpful deprecation warning to help users migrate.
Test Plan:
Also manual testing: