Skip to content

Add some missing "long time" annotations #40414

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Jul 25, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -138,6 +138,7 @@ the above call ``E.spherical_coordinates()``::
These formulas are automatically used if we ask to plot the grid of spherical
coordinates in terms of Cartesian coordinates::

sage: # long time
sage: spherical.plot(cartesian, color={r:'red', th:'green', ph:'orange'})
Graphics3d Object

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -232,6 +232,7 @@ The Laplacian of a scalar field::

The Laplacian of a vector field::

sage: # long time
sage: Du = laplacian(u)
sage: Du.display()
Delta(u) = ((r^2*d^2(u_r)/dr^2 + 2*r*d(u_r)/dr - 2*u_r(r, th, ph)
Expand All @@ -247,7 +248,7 @@ The Laplacian of a vector field::
Since this expression is quite lengthy, we may ask for a display component by
component::

sage: Du.display_comp()
sage: Du.display_comp() # long time
Delta(u)^1 = ((r^2*d^2(u_r)/dr^2 + 2*r*d(u_r)/dr - 2*u_r(r, th, ph) + d^2(u_r)/dth^2
- 2*d(u_theta)/dth)*sin(th)^2 - ((2*u_theta(r, th, ph) - d(u_r)/dth)*cos(th)
+ 2*d(u_phi)/dph)*sin(th) + d^2(u_r)/dph^2)/(r^2*sin(th)^2)
Expand All @@ -260,6 +261,7 @@ component::

We may expand each component::

sage: # long time
sage: for i in E.irange():
....: s = Du[i].expand()
sage: Du.display_comp()
Expand Down
1 change: 1 addition & 0 deletions src/sage/combinat/symmetric_group_algebra.py
Original file line number Diff line number Diff line change
Expand Up @@ -1313,6 +1313,7 @@ def ladder_idempotent(self, la):
modules (which are the :meth:`Specht modules <specht_module>`
and also projective modules)::

sage: # long time
sage: SGA = SymmetricGroupAlgebra(QQ, 5)
sage: for la in Partitions(SGA.n):
....: idem = SGA.ladder_idempotent(la)
Expand Down
4 changes: 4 additions & 0 deletions src/sage/doctest/forker.py
Original file line number Diff line number Diff line change
Expand Up @@ -2184,6 +2184,7 @@ class should be accessed by the child process.

EXAMPLES::

sage: # long time
sage: from sage.doctest.forker import DocTestWorker, DocTestTask
sage: from sage.doctest.sources import FileDocTestSource
sage: from sage.doctest.reporting import DocTestReporter
Expand Down Expand Up @@ -2308,6 +2309,7 @@ def start(self):

TESTS::

sage: # long time
sage: from sage.doctest.forker import DocTestWorker, DocTestTask
sage: from sage.doctest.sources import FileDocTestSource
sage: from sage.doctest.reporting import DocTestReporter
Expand Down Expand Up @@ -2347,6 +2349,7 @@ def read_messages(self):

EXAMPLES::

sage: # long time
sage: from sage.doctest.forker import DocTestWorker, DocTestTask
sage: from sage.doctest.sources import FileDocTestSource
sage: from sage.doctest.reporting import DocTestReporter
Expand Down Expand Up @@ -2381,6 +2384,7 @@ def save_result_output(self):

EXAMPLES::

sage: # long time
sage: from sage.doctest.forker import DocTestWorker, DocTestTask
sage: from sage.doctest.sources import FileDocTestSource
sage: from sage.doctest.reporting import DocTestReporter
Expand Down
2 changes: 1 addition & 1 deletion src/sage/dynamics/arithmetic_dynamics/projective_ds.py
Original file line number Diff line number Diff line change
Expand Up @@ -6972,7 +6972,7 @@ def Lattes_to_curve(self, return_conjugation=False, check_lattes=False):
sage: P.<x,y>=ProjectiveSpace(QQbar, 1)
sage: E=EllipticCurve([1, 2])
sage: f=P.Lattes_map(E, 2)
sage: f.Lattes_to_curve(check_lattes=true)
sage: f.Lattes_to_curve(check_lattes=true) # long time
Elliptic Curve defined by y^2 = x^3 + x + 2 over Rational Field

"""
Expand Down
2 changes: 1 addition & 1 deletion src/sage/graphs/hypergraph_generators.py
Original file line number Diff line number Diff line change
Expand Up @@ -304,7 +304,7 @@ def BinomialRandomUniform(self, n, k, p):

EXAMPLES::

sage: hypergraphs.BinomialRandomUniform(50, 3, 1).num_blocks() # needs numpy
sage: hypergraphs.BinomialRandomUniform(50, 3, 1).num_blocks() # needs numpy, long time
19600
sage: hypergraphs.BinomialRandomUniform(50, 3, 0).num_blocks() # needs numpy
0
Expand Down
14 changes: 11 additions & 3 deletions src/sage/groups/perm_gps/permgroup_named.py
Original file line number Diff line number Diff line change
Expand Up @@ -3505,16 +3505,24 @@ class SmallPermutationGroup(PermutationGroup_generic):
Group of order 12 and GAP Id 4 as a permutation group
sage: G.gens()
((4,5), (1,2), (3,4,5))
sage: G.character_table() # needs sage.rings.number_field
sage: G.character_table() # needs sage.rings.number_field
[ 1 1 1 1 1 1]
[ 1 -1 1 -1 1 -1]
[ 1 -1 1 1 -1 1]
[ 1 1 1 -1 -1 -1]
[ 2 0 -1 -2 0 1]
[ 2 0 -1 2 0 -1]
sage: def numgps(n): return ZZ(libgap.NumberSmallGroups(n))
sage: all(SmallPermutationGroup(n,k).id() == [n,k]
....: for n in [1..64] for k in [1..numgps(n)]) # long time (180s)
sage: # verify at most five n and k, randomly, to save time
sage: from random import sample
sage: ns = sample([1..64], 5)
sage: def ks(n):
....: ngps = numgps(n)
....: ssize = min(5, ngps)
....: return sample([1..ngps], ssize)
sage: all(SmallPermutationGroup(n,k).id() == [n,k] # long time
....: for n in ns
....: for k in ks(n))
True
sage: H = SmallPermutationGroup(6,1)
sage: H.is_abelian()
Expand Down
8 changes: 4 additions & 4 deletions src/sage/interacts/test_jupyter.rst
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,7 @@ Test all interacts from the Sage interact library::
Exact value of the integral \(\displaystyle\int_{0}^{2}x^{2} +
1\,\mathrm{d}x=4.666666666666668\)

sage: test(interacts.calculus.function_tool)
sage: test(interacts.calculus.function_tool) # long time
...Interactive function <function function_tool at ...> with 7 widgets
f: EvalText(value='sin(x)', description='f')
g: EvalText(value='cos(x)', description='g')
Expand All @@ -218,7 +218,7 @@ Test all interacts from the Sage interact library::
<center><font color="green">\(g = \cos\left(x\right)\)</font></center>
<center><font color="blue"><b>\(h = f = \sin\left(x\right)\)</b></font></center>

sage: test(interacts.fractals.mandelbrot)
sage: test(interacts.fractals.mandelbrot) # long time
...Interactive function <function mandelbrot at ...> with 6 widgets
expo: FloatSlider(value=2.0, description='expo', max=10.0, min=-10.0)
iterations: IntSlider(value=20, description='# iterations', min=1)
Expand All @@ -229,7 +229,7 @@ Test all interacts from the Sage interact library::
<h2>Mandelbrot Fractal</h2>
Recursive Formula: \(z \leftarrow z^{2.00} + c\) for \(c \in \mathbb{C}\)

sage: test(interacts.fractals.julia)
sage: test(interacts.fractals.julia) # long time
...Interactive function <function julia at ...> with 8 widgets
expo: FloatSlider(value=2.0, description='expo', max=10.0, min=-10.0)
c_real: FloatSlider(value=0.5, description='real part const.', max=2.0, min=-2.0, step=0.01)
Expand Down Expand Up @@ -265,7 +265,7 @@ Test all interacts from the Sage interact library::
\(AB = 1.931852\), \(BC = 1.732051\), \(CA = 1.414214\)
Area of triangle \(ABC = 1.183013\)

sage: test(interacts.geometry.special_points)
sage: test(interacts.geometry.special_points) # long time
...Interactive function <function special_points at ...> with 10 widgets
title: HTMLText(value='<h2>Special points in triangle</h2>')
a0: IntSlider(value=30, description='A', max=360)
Expand Down
Loading