A lightweight Python service for decoding base64-encoded JSON payloads. This service provides a simple handler function that accepts encoded data, decodes it, and returns structured JSON output.
- Overview
- Architecture
- Tech Stack
- For Users: Accessing & Using the Application
- For Developers: Setup & Development
- Deployment
- Maintenance & Contributing
The Decoder Service is designed to process base64-encoded JSON payloads efficiently. It serves as a middleware component that can be integrated into larger data processing pipelines.
Key Features:
- Base64 payload decoding
- JSON parsing and validation
- Type-safe data handling
- Lightweight and extensible architecture
┌─────────────────────────────────────────────────────┐
│ Decoder Service │
│ │
│ ┌────────────────────────────────────────────┐ │
│ │ Input (Dict[str, Any]) │ │
│ │ { │ │
│ │ "payload": "<base64-encoded-string>" │ │
│ │ } │ │
│ └───────────────┬────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌────────────────────────────────────────────┐ │
│ │ Handler Function │ │
│ │ - Extracts payload │ │
│ │ - Base64 decode │ │
│ │ - JSON parse │ │
│ └───────────────┬────────────────────────────┘ │
│ │ │
│ ▼ │
│ ┌────────────────────────────────────────────┐ │
│ │ Output (Dict[str, Any]) │ │
│ │ { │ │
│ │ "payload": "<base64-encoded-string>", │ │
│ │ "data": { ... parsed JSON ... } │ │
│ │ } │ │
│ └────────────────────────────────────────────┘ │
│ │
└─────────────────────────────────────────────────────┘
Component Breakdown:
decoder-repo/
├── python/
│ └── main.py # Core handler function
└── README.md # This file
| Component | Technology | Purpose |
|---|---|---|
| Language | Python 3.7+ | Core implementation |
| Encoding | Base64 | Payload encoding/decoding |
| Data Format | JSON | Data serialization |
| Type Safety | Python typing module | Type hints and validation |
Dependencies:
base64(built-in): Base64 encoding/decodingjson(built-in): JSON parsing and serializationtyping(built-in): Type annotations
Current Status: Development/Integration Ready
This service is designed to be integrated as a module or function within your existing Python application or data processing pipeline.
from python.main import handler
# Prepare your data
input_data = {
"payload": "eyJuYW1lIjogIkpvaG4gRG9lIiwgImFnZSI6IDMwfQ==" # Base64 encoded JSON
}
# Process the data
result = handler(input_data)
# Access the decoded data
print(result["data"]) # {'name': 'John Doe', 'age': 30}The handler expects a dictionary with a payload key containing a base64-encoded JSON string:
{
"payload": "<base64-encoded-json-string>"
}The handler returns the input dictionary with an additional data key containing the parsed JSON:
{
"payload": "<base64-encoded-json-string>",
"data": {
# ... parsed JSON object ...
}
}-
Encode your JSON data (if needed):
import base64 import json original_data = {"name": "Jane Smith", "role": "Engineer"} encoded = base64.b64encode(json.dumps(original_data).encode("utf-8"))
-
Call the handler:
result = handler({"payload": encoded})
-
Use the decoded data:
user_name = result["data"]["name"] user_role = result["data"]["role"]
AWS Lambda:
from python.main import handler as decode_handler
def lambda_handler(event, context):
decoded_result = decode_handler(event)
return {
'statusCode': 200,
'body': decoded_result["data"]
}API Endpoint:
from flask import Flask, request, jsonify
from python.main import handler
app = Flask(__name__)
@app.route('/decode', methods=['POST'])
def decode():
result = handler(request.json)
return jsonify(result["data"])- Python 3.7 or higher
- Git
-
Clone the repository:
git clone <repository-url> cd decoder-repo
-
Verify Python version:
python --version # Should be 3.7+ -
No external dependencies required - this project uses only Python standard library modules.
decoder-repo/
├── python/
│ └── main.py # Core handler implementation
│ └── handler() # Main decoding function
├── README.md # Documentation
└── .git/ # Version control
The core handler function (handler()) performs three main operations:
- Extract the payload from the input dictionary
- Decode the base64 string to UTF-8 text
- Parse the JSON and add it to the result
def handler(data: Dict[str, Any]) -> Dict[str, Any]:
"""
Default pass-through function that returns data unchanged.
"""
encoded_payload = data.get("payload", "")
decoded_str = base64.b64decode(encoded_payload).decode("utf-8")
data["data"] = json.loads(decoded_str)
return dataType Signature:
- Input:
Dict[str, Any]- Dictionary with at least a "payload" key - Output:
Dict[str, Any]- Original dict + "data" key with parsed JSON
# Create a test script (test_handler.py)
cat > test_handler.py << 'EOF'
import base64
import json
from python.main import handler
def test_basic_decode():
test_data = {"name": "Test User", "value": 123}
encoded = base64.b64encode(json.dumps(test_data).encode("utf-8")).decode("utf-8")
result = handler({"payload": encoded})
assert result["data"]["name"] == "Test User"
assert result["data"]["value"] == 123
print("✓ Basic decode test passed")
if __name__ == "__main__":
test_basic_decode()
EOF
# Run the test
python test_handler.py-
Create a feature branch:
git checkout -b feature/your-feature-name
-
Make your changes to
python/main.py -
Test your changes with the test script above
-
Commit your changes:
git add . git commit -m "Description of your changes"
-
Push and create a pull request:
git push origin feature/your-feature-name
To add new features or modify behavior:
-
Add error handling:
try: decoded_str = base64.b64decode(encoded_payload).decode("utf-8") data["data"] = json.loads(decoded_str) except (base64.binascii.Error, json.JSONDecodeError) as e: data["error"] = str(e)
-
Add validation:
if not encoded_payload: raise ValueError("Payload is required")
-
Add additional transformations:
data["metadata"] = { "decoded_at": datetime.now().isoformat(), "payload_size": len(encoded_payload) }
- Follow PEP 8 style guide
- Use type hints for all function parameters and return values
- Include docstrings for all functions
- Keep functions focused and single-purpose
- Write descriptive variable names
Optional: Virtual Environment
# Create virtual environment (optional, no dependencies needed)
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activateOptional: Add Development Dependencies
# Create requirements-dev.txt for linting/testing tools
cat > requirements-dev.txt << EOF
black>=23.0.0
flake8>=6.0.0
mypy>=1.0.0
pytest>=7.0.0
EOF
pip install -r requirements-dev.txtThis service can be deployed in multiple ways depending on your infrastructure:
# Package the function
cd python
zip -r ../lambda_function.zip main.py
# Upload to AWS Lambda via CLI
aws lambda create-function \
--function-name decoder-service \
--runtime python3.9 \
--handler main.handler \
--zip-file fileb://../lambda_function.zip \
--role <your-lambda-role-arn># Create Dockerfile
FROM python:3.9-slim
WORKDIR /app
COPY python/ /app/python/
CMD ["python", "-c", "from python.main import handler; print(handler)"]# Build and run
docker build -t decoder-service .
docker run decoder-serviceSimply include the python/ directory in your project and import the handler:
from python.main import handlerRecommended Platforms:
- AWS Lambda: Serverless, pay-per-use, auto-scaling
- Google Cloud Functions: Similar to Lambda
- Azure Functions: Microsoft cloud equivalent
- Self-hosted: Any server with Python 3.7+
Current Status: Ready for deployment to any Python-compatible environment
- Monitor Python version compatibility - Ensure compatibility with latest Python versions
- Review security updates - Check for security advisories related to base64/JSON processing
- Update documentation - Keep README in sync with code changes
- Test with real-world payloads - Validate against actual use cases
We welcome contributions! Here's how you can help:
- Check if the issue already exists
- Provide a clear description
- Include sample input/output demonstrating the issue
- Specify your Python version and environment
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes with clear, focused commits
- Test thoroughly with various inputs
- Update documentation if needed
- Submit a pull request with a clear description
- Code follows PEP 8 style guidelines
- Type hints are included for new functions
- Docstrings are added/updated
- Changes are tested with sample data
- README is updated if functionality changes
- Commit messages are clear and descriptive
def handler(data: Dict[str, Any]) -> Dict[str, Any]:
if "payload" not in data:
raise ValueError("Missing 'payload' key in input data")
encoded_payload = data.get("payload", "")
if not encoded_payload:
raise ValueError("Payload cannot be empty")
# ... rest of the functionimport logging
logger = logging.getLogger(__name__)
def handler(data: Dict[str, Any]) -> Dict[str, Any]:
logger.info(f"Processing payload of length {len(data.get('payload', ''))}")
# ... rest of the function
logger.info("Payload processed successfully")
return datadef handler(data: Dict[str, Any], encoding: str = "base64") -> Dict[str, Any]:
encoded_payload = data.get("payload", "")
if encoding == "base64":
decoded_str = base64.b64decode(encoded_payload).decode("utf-8")
elif encoding == "hex":
decoded_str = bytes.fromhex(encoded_payload).decode("utf-8")
else:
raise ValueError(f"Unsupported encoding: {encoding}")
data["data"] = json.loads(decoded_str)
return data- Issues: Create an issue in the repository
- Questions: Reach out to the development team
- Documentation: This README and inline code comments
See commit history for detailed changes:
git log --oneline[Specify your license here]
[Specify contact information or support channels here]